采用有监督的数据驱动方法预测大理石废粉混凝土的劈裂拉伸和弯曲强度

Pala Ravikanth , T. Jothi Saravanan , K.I. Syed Ahmed Kabeer
{"title":"采用有监督的数据驱动方法预测大理石废粉混凝土的劈裂拉伸和弯曲强度","authors":"Pala Ravikanth ,&nbsp;T. Jothi Saravanan ,&nbsp;K.I. Syed Ahmed Kabeer","doi":"10.1016/j.clema.2024.100231","DOIUrl":null,"url":null,"abstract":"<div><p>The utilization of marble waste powder (MWP) as a supplementary cementitious material in concrete, serving as a replacement for cement, holds the potential to enhance split tensile strength (STS) and flexural strength (FS), alongside offering environmental advantages. However, it is crucial to determine the optimal dosage of MWP, ensuring meticulous mix design and testing procedures to maximize the concrete's strength and overall performance. This research endeavor seeks to investigate a supervised data-driven approach for predicting STS and FS in concrete composites incorporating MWP, along with other cementitious materials such as silica fume (SF), granite powder (GP), and fly ash (FA), and their influence on the STS and FS of MWP-incorporated concrete. Ten distinct machine learning (ML) algorithms, including multivariate linear regression (MVLR), support vector regression (SVR), artificial neural networks (ANN), decision tree regressor (DT), random forest regressor (RF), adaptive boosting regressor (AdB), light gradient boosting machine (LGBM), gradient boosting regressor (GBR), extreme gradient boosting (XGB), and cat boost, are employed to assess the predictive capabilities of these models for FS and STS datasets. Statistical metrics like correlation coefficient (R2), root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) are used to evaluate the performance of each ML algorithm. To enhance model efficiency, hyperparameter tuning and a 5-fold cross-validation technique are implemented. Among the ML algorithms tested, the cat boost algorithm demonstrates superior performance in predicting STS, while the ANN algorithm excels in predicting FS. Additionally, SHAP dependency plots are utilized to ascertain the feature importance in the best-performing models. The analysis reveals that features such as curing age, water, and cement play a more significant role in predicting STS, whereas attributes like cement, concrete type, and sand hold greater importance in predicting FS.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"11 ","pages":"Article 100231"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000157/pdfft?md5=8bef5ff20528fd55063b900c6d714f5c&pid=1-s2.0-S2772397624000157-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Supervised data-driven approach to predict split tensile and flexural strength of concrete with marble waste powder\",\"authors\":\"Pala Ravikanth ,&nbsp;T. Jothi Saravanan ,&nbsp;K.I. Syed Ahmed Kabeer\",\"doi\":\"10.1016/j.clema.2024.100231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The utilization of marble waste powder (MWP) as a supplementary cementitious material in concrete, serving as a replacement for cement, holds the potential to enhance split tensile strength (STS) and flexural strength (FS), alongside offering environmental advantages. However, it is crucial to determine the optimal dosage of MWP, ensuring meticulous mix design and testing procedures to maximize the concrete's strength and overall performance. This research endeavor seeks to investigate a supervised data-driven approach for predicting STS and FS in concrete composites incorporating MWP, along with other cementitious materials such as silica fume (SF), granite powder (GP), and fly ash (FA), and their influence on the STS and FS of MWP-incorporated concrete. Ten distinct machine learning (ML) algorithms, including multivariate linear regression (MVLR), support vector regression (SVR), artificial neural networks (ANN), decision tree regressor (DT), random forest regressor (RF), adaptive boosting regressor (AdB), light gradient boosting machine (LGBM), gradient boosting regressor (GBR), extreme gradient boosting (XGB), and cat boost, are employed to assess the predictive capabilities of these models for FS and STS datasets. Statistical metrics like correlation coefficient (R2), root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) are used to evaluate the performance of each ML algorithm. To enhance model efficiency, hyperparameter tuning and a 5-fold cross-validation technique are implemented. Among the ML algorithms tested, the cat boost algorithm demonstrates superior performance in predicting STS, while the ANN algorithm excels in predicting FS. Additionally, SHAP dependency plots are utilized to ascertain the feature importance in the best-performing models. The analysis reveals that features such as curing age, water, and cement play a more significant role in predicting STS, whereas attributes like cement, concrete type, and sand hold greater importance in predicting FS.</p></div>\",\"PeriodicalId\":100254,\"journal\":{\"name\":\"Cleaner Materials\",\"volume\":\"11 \",\"pages\":\"Article 100231\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772397624000157/pdfft?md5=8bef5ff20528fd55063b900c6d714f5c&pid=1-s2.0-S2772397624000157-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772397624000157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772397624000157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用大理石废粉(MWP)作为混凝土中的辅助胶凝材料,替代水泥,具有提高劈裂拉伸强度(STS)和抗折强度(FS)的潜力,同时还具有环保优势。然而,关键是要确定 MWP 的最佳用量,确保精心的混合设计和测试程序,以最大限度地提高混凝土的强度和整体性能。本研究旨在探索一种数据驱动的监督方法,用于预测掺入 MWP 以及硅灰(SF)、花岗岩粉末(GP)和粉煤灰(FA)等其他胶凝材料的混凝土复合材料的 STS 和 FS,以及它们对掺入 MWP 的混凝土 STS 和 FS 的影响。十种不同的机器学习(ML)算法,包括多元线性回归(MVLR)、支持向量回归(SVR)、人工神经网络(ANN)、决策树回归(DT)、随机森林回归(RF)、采用了自适应增强回归器(AdB)、轻梯度增强机(LGBM)、梯度增强回归器(GBR)、极梯度增强(XGB)和猫增强(cat boost),以评估这些模型对 FS 和 STS 数据集的预测能力。相关系数 (R2)、均方根误差 (RMSE)、平均绝对误差 (MAE) 和平均绝对百分比误差 (MAPE) 等统计指标被用来评估每种 ML 算法的性能。为了提高模型效率,还采用了超参数调整和 5 倍交叉验证技术。在测试的 ML 算法中,cat boost 算法在预测 STS 方面表现出色,而 ANN 算法在预测 FS 方面表现出色。此外,还利用 SHAP 依赖图来确定特征在表现最佳的模型中的重要性。分析结果表明,养护龄期、水和水泥等特征在预测 STS 时发挥了更重要的作用,而水泥、混凝土类型和砂等属性在预测 FS 时则具有更大的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Supervised data-driven approach to predict split tensile and flexural strength of concrete with marble waste powder

The utilization of marble waste powder (MWP) as a supplementary cementitious material in concrete, serving as a replacement for cement, holds the potential to enhance split tensile strength (STS) and flexural strength (FS), alongside offering environmental advantages. However, it is crucial to determine the optimal dosage of MWP, ensuring meticulous mix design and testing procedures to maximize the concrete's strength and overall performance. This research endeavor seeks to investigate a supervised data-driven approach for predicting STS and FS in concrete composites incorporating MWP, along with other cementitious materials such as silica fume (SF), granite powder (GP), and fly ash (FA), and their influence on the STS and FS of MWP-incorporated concrete. Ten distinct machine learning (ML) algorithms, including multivariate linear regression (MVLR), support vector regression (SVR), artificial neural networks (ANN), decision tree regressor (DT), random forest regressor (RF), adaptive boosting regressor (AdB), light gradient boosting machine (LGBM), gradient boosting regressor (GBR), extreme gradient boosting (XGB), and cat boost, are employed to assess the predictive capabilities of these models for FS and STS datasets. Statistical metrics like correlation coefficient (R2), root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) are used to evaluate the performance of each ML algorithm. To enhance model efficiency, hyperparameter tuning and a 5-fold cross-validation technique are implemented. Among the ML algorithms tested, the cat boost algorithm demonstrates superior performance in predicting STS, while the ANN algorithm excels in predicting FS. Additionally, SHAP dependency plots are utilized to ascertain the feature importance in the best-performing models. The analysis reveals that features such as curing age, water, and cement play a more significant role in predicting STS, whereas attributes like cement, concrete type, and sand hold greater importance in predicting FS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.20
自引率
0.00%
发文量
0
期刊最新文献
Investigation of the influence of crushed sand on carbonation of Mortar: Physical and microstructural analysis Biodegradable natural polymers and fibers for 3D printing: A holistic perspective on processing, characterization, and advanced applications Experimental study of phase change material (PCM) biochar composite for net-zero built environment applications Research trends on thermochromic asphalt mixtures functionalization: Bibliometric analysis and review Synergistic impact of geopolymer binder and recycled coarse aggregates on the performance of concrete masonry units
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1