Kyu Hyun Han, Seung-Hwan Kim, Seung-Geun Kim, Jong-Hyun Kim, Sungjoo Song, Hyun-Yong Yu
{"title":"实现双负差转导的电荷转移机制","authors":"Kyu Hyun Han, Seung-Hwan Kim, Seung-Geun Kim, Jong-Hyun Kim, Sungjoo Song, Hyun-Yong Yu","doi":"10.1038/s41699-024-00454-z","DOIUrl":null,"url":null,"abstract":"With development of information age, multi-valued logic (MVL) technology utilizing negative differential transconductance (NDT) phenomenon has drawn attention as next-generation computing technology that can replace binary logic. However, because conventional NDT devices primarily use ternary logic, multiple-peak NDT device is required for higher-radix MVL that can process more datasets. Here, van der Waals double-peak anti-ambipolar transistor (AAT) as NDT device was developed by utilizing peak voltage (Vpeak) modulation of NDT peak. For realization of quaternary logic, Vpeak modulation technology was developed through charge transfer mechanism from channel, thereby shifting NDT peak and increasing peak-to-valley current ratio (PVCR). Furthermore, Double-peak AAT was implemented through parallel configuration of two AATs with different Vpeak values. Finally, quaternary inverter with four widely stable logic states was implemented by utilizing the developed double-peak AAT with two distinct NDT peaks and high PVCR. This double-peak AAT is expected to contribute to the development of next-generation MVL technology capable of processing datasets.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-9"},"PeriodicalIF":9.1000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00454-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Charge transfer mechanism for realization of double negative differential transconductance\",\"authors\":\"Kyu Hyun Han, Seung-Hwan Kim, Seung-Geun Kim, Jong-Hyun Kim, Sungjoo Song, Hyun-Yong Yu\",\"doi\":\"10.1038/s41699-024-00454-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With development of information age, multi-valued logic (MVL) technology utilizing negative differential transconductance (NDT) phenomenon has drawn attention as next-generation computing technology that can replace binary logic. However, because conventional NDT devices primarily use ternary logic, multiple-peak NDT device is required for higher-radix MVL that can process more datasets. Here, van der Waals double-peak anti-ambipolar transistor (AAT) as NDT device was developed by utilizing peak voltage (Vpeak) modulation of NDT peak. For realization of quaternary logic, Vpeak modulation technology was developed through charge transfer mechanism from channel, thereby shifting NDT peak and increasing peak-to-valley current ratio (PVCR). Furthermore, Double-peak AAT was implemented through parallel configuration of two AATs with different Vpeak values. Finally, quaternary inverter with four widely stable logic states was implemented by utilizing the developed double-peak AAT with two distinct NDT peaks and high PVCR. This double-peak AAT is expected to contribute to the development of next-generation MVL technology capable of processing datasets.\",\"PeriodicalId\":19227,\"journal\":{\"name\":\"npj 2D Materials and Applications\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41699-024-00454-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj 2D Materials and Applications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41699-024-00454-z\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj 2D Materials and Applications","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41699-024-00454-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Charge transfer mechanism for realization of double negative differential transconductance
With development of information age, multi-valued logic (MVL) technology utilizing negative differential transconductance (NDT) phenomenon has drawn attention as next-generation computing technology that can replace binary logic. However, because conventional NDT devices primarily use ternary logic, multiple-peak NDT device is required for higher-radix MVL that can process more datasets. Here, van der Waals double-peak anti-ambipolar transistor (AAT) as NDT device was developed by utilizing peak voltage (Vpeak) modulation of NDT peak. For realization of quaternary logic, Vpeak modulation technology was developed through charge transfer mechanism from channel, thereby shifting NDT peak and increasing peak-to-valley current ratio (PVCR). Furthermore, Double-peak AAT was implemented through parallel configuration of two AATs with different Vpeak values. Finally, quaternary inverter with four widely stable logic states was implemented by utilizing the developed double-peak AAT with two distinct NDT peaks and high PVCR. This double-peak AAT is expected to contribute to the development of next-generation MVL technology capable of processing datasets.
期刊介绍:
npj 2D Materials and Applications publishes papers on the fundamental behavior, synthesis, properties and applications of existing and emerging 2D materials. By selecting papers with the potential for impact, the journal aims to facilitate the transfer of the research of 2D materials into wide-ranging applications.