Theo Meuwissen, Leiv Sigbjorn Eikje, Arne B. Gjuvsland
{"title":"GWABLUP:全基因组关联辅助最佳线性无偏预测遗传值","authors":"Theo Meuwissen, Leiv Sigbjorn Eikje, Arne B. Gjuvsland","doi":"10.1186/s12711-024-00881-y","DOIUrl":null,"url":null,"abstract":"Since the very beginning of genomic selection, researchers investigated methods that improved upon SNP-BLUP (single nucleotide polymorphism best linear unbiased prediction). SNP-BLUP gives equal weight to all SNPs, whereas it is expected that many SNPs are not near causal variants and thus do not have substantial effects. A recent approach to remedy this is to use genome-wide association study (GWAS) findings and increase the weights of GWAS-top-SNPs in genomic predictions. Here, we employ a genome-wide approach to integrate GWAS results into genomic prediction, called GWABLUP. GWABLUP consists of the following steps: (1) performing a GWAS in the training data which results in likelihood ratios; (2) smoothing the likelihood ratios over the SNPs; (3) combining the smoothed likelihood ratio with the prior probability of SNPs having non-zero effects, which yields the posterior probability of the SNPs; (4) calculating a weighted genomic relationship matrix using the posterior probabilities as weights; and (5) performing genomic prediction using the weighted genomic relationship matrix. Using high-density genotypes and milk, fat, protein and somatic cell count phenotypes on dairy cows, GWABLUP was compared to GBLUP, GBLUP (topSNPs) with extra weights for GWAS top-SNPs, and BayesGC, i.e. a Bayesian variable selection model. The GWAS resulted in six, five, four, and three genome-wide significant peaks for milk, fat and protein yield and somatic cell count, respectively. GWABLUP genomic predictions were 10, 6, 7 and 1% more reliable than those of GBLUP for milk, fat and protein yield and somatic cell count, respectively. It was also more reliable than GBLUP (topSNPs) for all four traits, and more reliable than BayesGC for three of the traits. Although GWABLUP showed a tendency towards inflation bias for three of the traits, this was not statistically significant. In a multitrait analysis, GWABLUP yielded the highest accuracy for two of the traits. However, for SCC, which was relatively unrelated to the yield traits, including yield trait GWAS-results reduced the reliability compared to a single trait analysis. GWABLUP uses GWAS results to differentially weigh all the SNPs in a weighted GBLUP genomic prediction analysis. GWABLUP yielded up to 10% and 13% more reliable genomic predictions than GBLUP for single and multitrait analyses, respectively. Extension of GWABLUP to single-step analyses is straightforward.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GWABLUP: genome-wide association assisted best linear unbiased prediction of genetic values\",\"authors\":\"Theo Meuwissen, Leiv Sigbjorn Eikje, Arne B. Gjuvsland\",\"doi\":\"10.1186/s12711-024-00881-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the very beginning of genomic selection, researchers investigated methods that improved upon SNP-BLUP (single nucleotide polymorphism best linear unbiased prediction). SNP-BLUP gives equal weight to all SNPs, whereas it is expected that many SNPs are not near causal variants and thus do not have substantial effects. A recent approach to remedy this is to use genome-wide association study (GWAS) findings and increase the weights of GWAS-top-SNPs in genomic predictions. Here, we employ a genome-wide approach to integrate GWAS results into genomic prediction, called GWABLUP. GWABLUP consists of the following steps: (1) performing a GWAS in the training data which results in likelihood ratios; (2) smoothing the likelihood ratios over the SNPs; (3) combining the smoothed likelihood ratio with the prior probability of SNPs having non-zero effects, which yields the posterior probability of the SNPs; (4) calculating a weighted genomic relationship matrix using the posterior probabilities as weights; and (5) performing genomic prediction using the weighted genomic relationship matrix. Using high-density genotypes and milk, fat, protein and somatic cell count phenotypes on dairy cows, GWABLUP was compared to GBLUP, GBLUP (topSNPs) with extra weights for GWAS top-SNPs, and BayesGC, i.e. a Bayesian variable selection model. The GWAS resulted in six, five, four, and three genome-wide significant peaks for milk, fat and protein yield and somatic cell count, respectively. GWABLUP genomic predictions were 10, 6, 7 and 1% more reliable than those of GBLUP for milk, fat and protein yield and somatic cell count, respectively. It was also more reliable than GBLUP (topSNPs) for all four traits, and more reliable than BayesGC for three of the traits. Although GWABLUP showed a tendency towards inflation bias for three of the traits, this was not statistically significant. In a multitrait analysis, GWABLUP yielded the highest accuracy for two of the traits. However, for SCC, which was relatively unrelated to the yield traits, including yield trait GWAS-results reduced the reliability compared to a single trait analysis. GWABLUP uses GWAS results to differentially weigh all the SNPs in a weighted GBLUP genomic prediction analysis. GWABLUP yielded up to 10% and 13% more reliable genomic predictions than GBLUP for single and multitrait analyses, respectively. Extension of GWABLUP to single-step analyses is straightforward.\",\"PeriodicalId\":55120,\"journal\":{\"name\":\"Genetics Selection Evolution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics Selection Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12711-024-00881-y\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Selection Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12711-024-00881-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
GWABLUP: genome-wide association assisted best linear unbiased prediction of genetic values
Since the very beginning of genomic selection, researchers investigated methods that improved upon SNP-BLUP (single nucleotide polymorphism best linear unbiased prediction). SNP-BLUP gives equal weight to all SNPs, whereas it is expected that many SNPs are not near causal variants and thus do not have substantial effects. A recent approach to remedy this is to use genome-wide association study (GWAS) findings and increase the weights of GWAS-top-SNPs in genomic predictions. Here, we employ a genome-wide approach to integrate GWAS results into genomic prediction, called GWABLUP. GWABLUP consists of the following steps: (1) performing a GWAS in the training data which results in likelihood ratios; (2) smoothing the likelihood ratios over the SNPs; (3) combining the smoothed likelihood ratio with the prior probability of SNPs having non-zero effects, which yields the posterior probability of the SNPs; (4) calculating a weighted genomic relationship matrix using the posterior probabilities as weights; and (5) performing genomic prediction using the weighted genomic relationship matrix. Using high-density genotypes and milk, fat, protein and somatic cell count phenotypes on dairy cows, GWABLUP was compared to GBLUP, GBLUP (topSNPs) with extra weights for GWAS top-SNPs, and BayesGC, i.e. a Bayesian variable selection model. The GWAS resulted in six, five, four, and three genome-wide significant peaks for milk, fat and protein yield and somatic cell count, respectively. GWABLUP genomic predictions were 10, 6, 7 and 1% more reliable than those of GBLUP for milk, fat and protein yield and somatic cell count, respectively. It was also more reliable than GBLUP (topSNPs) for all four traits, and more reliable than BayesGC for three of the traits. Although GWABLUP showed a tendency towards inflation bias for three of the traits, this was not statistically significant. In a multitrait analysis, GWABLUP yielded the highest accuracy for two of the traits. However, for SCC, which was relatively unrelated to the yield traits, including yield trait GWAS-results reduced the reliability compared to a single trait analysis. GWABLUP uses GWAS results to differentially weigh all the SNPs in a weighted GBLUP genomic prediction analysis. GWABLUP yielded up to 10% and 13% more reliable genomic predictions than GBLUP for single and multitrait analyses, respectively. Extension of GWABLUP to single-step analyses is straightforward.
期刊介绍:
Genetics Selection Evolution invites basic, applied and methodological content that will aid the current understanding and the utilization of genetic variability in domestic animal species. Although the focus is on domestic animal species, research on other species is invited if it contributes to the understanding of the use of genetic variability in domestic animals. Genetics Selection Evolution publishes results from all levels of study, from the gene to the quantitative trait, from the individual to the population, the breed or the species. Contributions concerning both the biological approach, from molecular genetics to quantitative genetics, as well as the mathematical approach, from population genetics to statistics, are welcome. Specific areas of interest include but are not limited to: gene and QTL identification, mapping and characterization, analysis of new phenotypes, high-throughput SNP data analysis, functional genomics, cytogenetics, genetic diversity of populations and breeds, genetic evaluation, applied and experimental selection, genomic selection, selection efficiency, and statistical methodology for the genetic analysis of phenotypes with quantitative and mixed inheritance.