通过创建超细微结构提高浸没摩擦搅拌加工 ER2319 合金的强度-延展性协同效应

IF 2.9 2区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Acta Metallurgica Sinica-English Letters Pub Date : 2024-02-29 DOI:10.1007/s40195-023-01655-z
Jinpeng Hu, Tao Sun, Fujun Cao, Yifu Shen, Zhiyuan Yang, Chan Guo
{"title":"通过创建超细微结构提高浸没摩擦搅拌加工 ER2319 合金的强度-延展性协同效应","authors":"Jinpeng Hu, Tao Sun, Fujun Cao, Yifu Shen, Zhiyuan Yang, Chan Guo","doi":"10.1007/s40195-023-01655-z","DOIUrl":null,"url":null,"abstract":"<p>Submerged friction stir processing (SFSP) with flowing water was employed to alleviate the porosities and coarse-grained structure introduced by wire-arc manufacturing. As a result, uniform and ultrafine grained (UFG) structure with average grain size of 0.83 μm was achieved with the help of sharply reduced heat input and holding time at elevated temperature. The optimized UFG structure enabled a superior combination of strength and ductility with high ultimate tensile strength and elongation of 273.17 MPa and 15.39%. Specifically, grain refinement strengthening and decentralized <i>θ</i>(Al<sub>2</sub>Cu) phase in the sample subjected to SFSP made great contributions to the enhanced strength. In addition, the decrease in residual stresses and removal of pores substantially enhance the ductility. High rates of cooling and low temperature cycling, which are facilitated by the water-cooling environment throughout the machining process, are vital in obtaining superior microstructures. This work provides a new method for developing a uniform and UFG structure with excellent mechanical properties.</p>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Strength–Ductility Synergy in Submerged Friction Stir Processing ER2319 Alloy Manufactured by Wire-Arc Additive Manufacturing via Creating Ultrafine Microstructure\",\"authors\":\"Jinpeng Hu, Tao Sun, Fujun Cao, Yifu Shen, Zhiyuan Yang, Chan Guo\",\"doi\":\"10.1007/s40195-023-01655-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Submerged friction stir processing (SFSP) with flowing water was employed to alleviate the porosities and coarse-grained structure introduced by wire-arc manufacturing. As a result, uniform and ultrafine grained (UFG) structure with average grain size of 0.83 μm was achieved with the help of sharply reduced heat input and holding time at elevated temperature. The optimized UFG structure enabled a superior combination of strength and ductility with high ultimate tensile strength and elongation of 273.17 MPa and 15.39%. Specifically, grain refinement strengthening and decentralized <i>θ</i>(Al<sub>2</sub>Cu) phase in the sample subjected to SFSP made great contributions to the enhanced strength. In addition, the decrease in residual stresses and removal of pores substantially enhance the ductility. High rates of cooling and low temperature cycling, which are facilitated by the water-cooling environment throughout the machining process, are vital in obtaining superior microstructures. This work provides a new method for developing a uniform and UFG structure with excellent mechanical properties.</p>\",\"PeriodicalId\":457,\"journal\":{\"name\":\"Acta Metallurgica Sinica-English Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Metallurgica Sinica-English Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1007/s40195-023-01655-z\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1007/s40195-023-01655-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

采用流水浸没式摩擦搅拌加工(SFSP)减轻了线弧制造带来的多孔性和粗粒结构。结果,在大幅减少热输入和高温保温时间的帮助下,获得了平均晶粒尺寸为 0.83 μm 的均匀超细晶粒 (UFG) 结构。优化后的 UFG 结构实现了强度和延展性的完美结合,极限拉伸强度和伸长率分别达到 273.17 兆帕和 15.39%。具体而言,经过 SFSP 处理的样品中的晶粒细化强化和分散的 θ(Al2Cu)相为强度的提高做出了巨大贡献。此外,残余应力的减少和孔隙的消除也大大提高了延展性。在整个加工过程中,水冷环境促进了高速冷却和低温循环,这对获得优异的微观结构至关重要。这项工作提供了一种新方法,可用于开发具有优异机械性能的均匀 UFG 结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced Strength–Ductility Synergy in Submerged Friction Stir Processing ER2319 Alloy Manufactured by Wire-Arc Additive Manufacturing via Creating Ultrafine Microstructure

Submerged friction stir processing (SFSP) with flowing water was employed to alleviate the porosities and coarse-grained structure introduced by wire-arc manufacturing. As a result, uniform and ultrafine grained (UFG) structure with average grain size of 0.83 μm was achieved with the help of sharply reduced heat input and holding time at elevated temperature. The optimized UFG structure enabled a superior combination of strength and ductility with high ultimate tensile strength and elongation of 273.17 MPa and 15.39%. Specifically, grain refinement strengthening and decentralized θ(Al2Cu) phase in the sample subjected to SFSP made great contributions to the enhanced strength. In addition, the decrease in residual stresses and removal of pores substantially enhance the ductility. High rates of cooling and low temperature cycling, which are facilitated by the water-cooling environment throughout the machining process, are vital in obtaining superior microstructures. This work provides a new method for developing a uniform and UFG structure with excellent mechanical properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Metallurgica Sinica-English Letters
Acta Metallurgica Sinica-English Letters METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
6.60
自引率
14.30%
发文量
122
审稿时长
2 months
期刊介绍: This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.
期刊最新文献
Effects of Post-Heat Treatment and Carbide Precipitates on Strength-Ductility Balance of GH3536 Superalloy Prepared by Selective Laser Melting High Strength and Heat Resistance of Low-RE-Containing Mg Alloy Achieved via Substantial Dynamic Precipitates First-Principles Calculations on Electronic Structure, Adhesion Strength, and Interfacial Stability of Mg(0001)/AlB2(0001) Nucleation Interface Influence of Substituting W for Nb or Hf on Solidification Behavior of a Typical Co–Ni–Al–W Based Superalloy Effect of Ta on Tensile Behavior and Deformation Mechanism of a Nickel-Based Single Crystal Superalloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1