Lei Wang, Sijie Tao, Lindong Zhao, Dengyou Zhou, Zhe Liu, Yanbing Sun
{"title":"基于动态选择数值法的 URLLC 和 eMBB 共存中的资源调度","authors":"Lei Wang, Sijie Tao, Lindong Zhao, Dengyou Zhou, Zhe Liu, Yanbing Sun","doi":"10.1155/2024/9480388","DOIUrl":null,"url":null,"abstract":"This paper focuses on the resource allocation problem of multiplexing two different service scenarios, enhanced mobile broadband (eMBB) and ultrareliable low latency (URLLC) in 5G New Radio, based on dynamic numerology structure, mini-time slot scheduling, and puncturing to achieve optimal resource allocation. To obtain the optimal channel resource allocation under URLLC user constraints, this paper establishes a relevant channel model divided into two convex optimization problems: (a) eMBB resource allocation and (b) URLLC scheduling. We also determine the numerology values at the beginning of each time slot with the help of deep reinforcement learning to achieve flexible resource scheduling. The proposed algorithm is verified in simulation software, and the simulation results show that the dynamic selection of numerologies proposed in this paper can better improve the data transmission rate of eMBB users and reduce the latency of URLLC services compared with the fixed numerology scheme for the same URLLC packet arrival, while the reasonable resource allocation ensures the reliability of URLLC and eMBB communication.","PeriodicalId":501499,"journal":{"name":"Wireless Communications and Mobile Computing","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resource Scheduling in URLLC and eMBB Coexistence Based on Dynamic Selection Numerology\",\"authors\":\"Lei Wang, Sijie Tao, Lindong Zhao, Dengyou Zhou, Zhe Liu, Yanbing Sun\",\"doi\":\"10.1155/2024/9480388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the resource allocation problem of multiplexing two different service scenarios, enhanced mobile broadband (eMBB) and ultrareliable low latency (URLLC) in 5G New Radio, based on dynamic numerology structure, mini-time slot scheduling, and puncturing to achieve optimal resource allocation. To obtain the optimal channel resource allocation under URLLC user constraints, this paper establishes a relevant channel model divided into two convex optimization problems: (a) eMBB resource allocation and (b) URLLC scheduling. We also determine the numerology values at the beginning of each time slot with the help of deep reinforcement learning to achieve flexible resource scheduling. The proposed algorithm is verified in simulation software, and the simulation results show that the dynamic selection of numerologies proposed in this paper can better improve the data transmission rate of eMBB users and reduce the latency of URLLC services compared with the fixed numerology scheme for the same URLLC packet arrival, while the reasonable resource allocation ensures the reliability of URLLC and eMBB communication.\",\"PeriodicalId\":501499,\"journal\":{\"name\":\"Wireless Communications and Mobile Computing\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wireless Communications and Mobile Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/9480388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Communications and Mobile Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/9480388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Resource Scheduling in URLLC and eMBB Coexistence Based on Dynamic Selection Numerology
This paper focuses on the resource allocation problem of multiplexing two different service scenarios, enhanced mobile broadband (eMBB) and ultrareliable low latency (URLLC) in 5G New Radio, based on dynamic numerology structure, mini-time slot scheduling, and puncturing to achieve optimal resource allocation. To obtain the optimal channel resource allocation under URLLC user constraints, this paper establishes a relevant channel model divided into two convex optimization problems: (a) eMBB resource allocation and (b) URLLC scheduling. We also determine the numerology values at the beginning of each time slot with the help of deep reinforcement learning to achieve flexible resource scheduling. The proposed algorithm is verified in simulation software, and the simulation results show that the dynamic selection of numerologies proposed in this paper can better improve the data transmission rate of eMBB users and reduce the latency of URLLC services compared with the fixed numerology scheme for the same URLLC packet arrival, while the reasonable resource allocation ensures the reliability of URLLC and eMBB communication.