Rademene S. Oria , Godson E. Anyanwu , Johnson N. Nto , James O. Ikpa
{"title":"姜黄素通过抑制促炎细胞因子的释放、抑制小胶质细胞增生和调节ERK/MAPK信号通路来减轻钴诱导的神经炎症。","authors":"Rademene S. Oria , Godson E. Anyanwu , Johnson N. Nto , James O. Ikpa","doi":"10.1016/j.jchemneu.2024.102402","DOIUrl":null,"url":null,"abstract":"<div><p>Curcumin, a bioactive polyphenol derived from turmeric, has been reported to have anti-inflammatory properties. The current study investigated the anti-inflammatory effect of curcumin in the hippocampal subfields (CA1 and CA3) after exposure to cobalt (Co) and the impact of ERK protein. Twenty-eight albino Wistar rats were divided into four groups, each with seven randomly selected rats as follows: Control (distilled water), Cobalt (Co) only (40 mg/kg), 120 mg/kg or 240 mg/kg curcumin + Co (40 mg/kg). Treatment was via oral gavage for 28 days. We performed a biochemical investigation to determine the levels of proinflammatory cytokines (TNFα and IL-1β). Furthermore, we conducted an immunohistochemical evaluation to assess the expression of IBA1 by microglial cells and the immunoexpression of ERK protein in the hippocampus. Results revealed a significant (p<0.05) elevation in the tissue level of TNFα and IL-1β, an increase in the number of IBA1-positive microglia, and upregulation of ERK protein in the hippocampal subfields of the rats after exposure to cobalt-only. Nevertheless, pretreatment with curcumin restored these parameters to levels comparable to control. In conclusion, our results showed that curcumin abrogated the Co-induced neuroinflammation by suppressing the release of proinflammatory biomarkers, reducing microgliosis, and modulating the ERK/MAPK pathway.</p></div>","PeriodicalId":15324,"journal":{"name":"Journal of chemical neuroanatomy","volume":"137 ","pages":"Article 102402"},"PeriodicalIF":2.7000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curcumin abrogates cobalt-induced neuroinflammation by suppressing proinflammatory cytokines release, inhibiting microgliosis and modulation of ERK/MAPK signaling pathway\",\"authors\":\"Rademene S. Oria , Godson E. Anyanwu , Johnson N. Nto , James O. Ikpa\",\"doi\":\"10.1016/j.jchemneu.2024.102402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Curcumin, a bioactive polyphenol derived from turmeric, has been reported to have anti-inflammatory properties. The current study investigated the anti-inflammatory effect of curcumin in the hippocampal subfields (CA1 and CA3) after exposure to cobalt (Co) and the impact of ERK protein. Twenty-eight albino Wistar rats were divided into four groups, each with seven randomly selected rats as follows: Control (distilled water), Cobalt (Co) only (40 mg/kg), 120 mg/kg or 240 mg/kg curcumin + Co (40 mg/kg). Treatment was via oral gavage for 28 days. We performed a biochemical investigation to determine the levels of proinflammatory cytokines (TNFα and IL-1β). Furthermore, we conducted an immunohistochemical evaluation to assess the expression of IBA1 by microglial cells and the immunoexpression of ERK protein in the hippocampus. Results revealed a significant (p<0.05) elevation in the tissue level of TNFα and IL-1β, an increase in the number of IBA1-positive microglia, and upregulation of ERK protein in the hippocampal subfields of the rats after exposure to cobalt-only. Nevertheless, pretreatment with curcumin restored these parameters to levels comparable to control. In conclusion, our results showed that curcumin abrogated the Co-induced neuroinflammation by suppressing the release of proinflammatory biomarkers, reducing microgliosis, and modulating the ERK/MAPK pathway.</p></div>\",\"PeriodicalId\":15324,\"journal\":{\"name\":\"Journal of chemical neuroanatomy\",\"volume\":\"137 \",\"pages\":\"Article 102402\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of chemical neuroanatomy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0891061824000152\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chemical neuroanatomy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891061824000152","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Curcumin abrogates cobalt-induced neuroinflammation by suppressing proinflammatory cytokines release, inhibiting microgliosis and modulation of ERK/MAPK signaling pathway
Curcumin, a bioactive polyphenol derived from turmeric, has been reported to have anti-inflammatory properties. The current study investigated the anti-inflammatory effect of curcumin in the hippocampal subfields (CA1 and CA3) after exposure to cobalt (Co) and the impact of ERK protein. Twenty-eight albino Wistar rats were divided into four groups, each with seven randomly selected rats as follows: Control (distilled water), Cobalt (Co) only (40 mg/kg), 120 mg/kg or 240 mg/kg curcumin + Co (40 mg/kg). Treatment was via oral gavage for 28 days. We performed a biochemical investigation to determine the levels of proinflammatory cytokines (TNFα and IL-1β). Furthermore, we conducted an immunohistochemical evaluation to assess the expression of IBA1 by microglial cells and the immunoexpression of ERK protein in the hippocampus. Results revealed a significant (p<0.05) elevation in the tissue level of TNFα and IL-1β, an increase in the number of IBA1-positive microglia, and upregulation of ERK protein in the hippocampal subfields of the rats after exposure to cobalt-only. Nevertheless, pretreatment with curcumin restored these parameters to levels comparable to control. In conclusion, our results showed that curcumin abrogated the Co-induced neuroinflammation by suppressing the release of proinflammatory biomarkers, reducing microgliosis, and modulating the ERK/MAPK pathway.
期刊介绍:
The Journal of Chemical Neuroanatomy publishes scientific reports relating the functional and biochemical aspects of the nervous system with its microanatomical organization. The scope of the journal concentrates on reports which combine microanatomical, biochemical, pharmacological and behavioural approaches.
Papers should offer original data correlating the morphology of the nervous system (the brain and spinal cord in particular) with its biochemistry. The Journal of Chemical Neuroanatomy is particularly interested in publishing important studies performed with up-to-date methodology utilizing sensitive chemical microassays, hybridoma technology, immunocytochemistry, in situ hybridization and receptor radioautography, to name a few examples.
The Journal of Chemical Neuroanatomy is the natural vehicle for integrated studies utilizing these approaches. The articles will be selected by the editorial board and invited reviewers on the basis of their excellence and potential contribution to this field of neurosciences. Both in vivo and in vitro integrated studies in chemical neuroanatomy are appropriate subjects of interest to the journal. These studies should relate only to vertebrate species with particular emphasis on the mammalian and primate nervous systems.