{"title":"Android 应用程序崩溃该归咎于谁?规模化深入研究与实用解决方案","authors":"Liangyi Gong, Hao Lin, Daibo Liu, Lanqi Yang, Hongyi Wang, Jiaxing Qiu, Zhenhua Li, Feng Qian","doi":"10.1145/3649895","DOIUrl":null,"url":null,"abstract":"<p>Android system has been widely deployed in energy-constrained IoT devices for many practical applications, such as smart phone, smart home, healthcare, fitness, and beacons. However, Android users oftentimes suffer from app crashes, which directly disrupt user experience and could lead to data loss. Till now, the community have limited understanding of their prevalence, characteristics, and root causes. In this paper, we make an in-depth study of the crash events regarding ten very popular apps of different genres, based on fine-grained system-level traces crowd-sourced from 93 million Android devices. We find that app crashes occur prevalently on the various hardware models studied, and better hardware does not seem to essentially relieve the problem. Most importantly, we unravel multi-fold root causes of app crashes, and pinpoint that the most crashes stem from the subtle yet crucial inconsistency between app developers’ supposed memory/process management model and Android’s actual implementations. We design practical approaches to addressing the inconsistency; after large-scale deployment, they reduce 40.4% of the app crashes with negligible system overhead. In addition, we summarize important lessons learned from this study, and have released our measurement code/data to the community.</p>","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":"35 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Who Should We Blame for Android App Crashes? An In-Depth Study at Scale and Practical Resolutions\",\"authors\":\"Liangyi Gong, Hao Lin, Daibo Liu, Lanqi Yang, Hongyi Wang, Jiaxing Qiu, Zhenhua Li, Feng Qian\",\"doi\":\"10.1145/3649895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Android system has been widely deployed in energy-constrained IoT devices for many practical applications, such as smart phone, smart home, healthcare, fitness, and beacons. However, Android users oftentimes suffer from app crashes, which directly disrupt user experience and could lead to data loss. Till now, the community have limited understanding of their prevalence, characteristics, and root causes. In this paper, we make an in-depth study of the crash events regarding ten very popular apps of different genres, based on fine-grained system-level traces crowd-sourced from 93 million Android devices. We find that app crashes occur prevalently on the various hardware models studied, and better hardware does not seem to essentially relieve the problem. Most importantly, we unravel multi-fold root causes of app crashes, and pinpoint that the most crashes stem from the subtle yet crucial inconsistency between app developers’ supposed memory/process management model and Android’s actual implementations. We design practical approaches to addressing the inconsistency; after large-scale deployment, they reduce 40.4% of the app crashes with negligible system overhead. In addition, we summarize important lessons learned from this study, and have released our measurement code/data to the community.</p>\",\"PeriodicalId\":50910,\"journal\":{\"name\":\"ACM Transactions on Sensor Networks\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3649895\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3649895","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Who Should We Blame for Android App Crashes? An In-Depth Study at Scale and Practical Resolutions
Android system has been widely deployed in energy-constrained IoT devices for many practical applications, such as smart phone, smart home, healthcare, fitness, and beacons. However, Android users oftentimes suffer from app crashes, which directly disrupt user experience and could lead to data loss. Till now, the community have limited understanding of their prevalence, characteristics, and root causes. In this paper, we make an in-depth study of the crash events regarding ten very popular apps of different genres, based on fine-grained system-level traces crowd-sourced from 93 million Android devices. We find that app crashes occur prevalently on the various hardware models studied, and better hardware does not seem to essentially relieve the problem. Most importantly, we unravel multi-fold root causes of app crashes, and pinpoint that the most crashes stem from the subtle yet crucial inconsistency between app developers’ supposed memory/process management model and Android’s actual implementations. We design practical approaches to addressing the inconsistency; after large-scale deployment, they reduce 40.4% of the app crashes with negligible system overhead. In addition, we summarize important lessons learned from this study, and have released our measurement code/data to the community.
期刊介绍:
ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.