Simeon Babatunde, Arwa Alsubhi, Josiah Hester, Jacob Sorber
{"title":"绿牙为无电池设备提供稳健、节能的无线网络","authors":"Simeon Babatunde, Arwa Alsubhi, Josiah Hester, Jacob Sorber","doi":"10.1145/3649221","DOIUrl":null,"url":null,"abstract":"<p>Communication presents a critical challenge for emerging intermittently powered batteryless sensors. Batteryless devices that operate entirely on harvested energy often experience frequent, unpredictable power outages and have trouble keeping time accurately. Consequently, effective communication using today’s low-power wireless network standards and protocols becomes difficult, particularly because existing standards are usually designed to support reliably powered devices with predictable node availability and accurate timekeeping capabilities for connection and congestion management. </p><p>In this paper, we present Greentooth, a robust and energy-efficient wireless communication protocol for intermittently-powered sensor networks. It enables reliable communication between a receiver and multiple batteryless sensors using TDMA-style scheduling and low-power wake-up radios for synchronization. Greentooth employs lightweight and energy-efficient connections that are resilient to transient power outages, while significantly improving network reliability, throughput, and energy efficiency of both the battery-free sensor nodes and the receiver—which could be untethered and energy-constrained. We evaluate Greentooth using a custom-built batteryless sensor prototype on synthetic and real-world energy traces recorded from different locations in a garden across different times of the day. Results show that Greentooth achieves 73% and 283% more throughput compared to AWD MAC and RI-CPT-WUR respectively under intermittent ambient solar energy, and over 2x longer receiver lifetime.</p>","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":"82 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Greentooth: Robust and Energy Efficient Wireless Networking for Batteryless Devices\",\"authors\":\"Simeon Babatunde, Arwa Alsubhi, Josiah Hester, Jacob Sorber\",\"doi\":\"10.1145/3649221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Communication presents a critical challenge for emerging intermittently powered batteryless sensors. Batteryless devices that operate entirely on harvested energy often experience frequent, unpredictable power outages and have trouble keeping time accurately. Consequently, effective communication using today’s low-power wireless network standards and protocols becomes difficult, particularly because existing standards are usually designed to support reliably powered devices with predictable node availability and accurate timekeeping capabilities for connection and congestion management. </p><p>In this paper, we present Greentooth, a robust and energy-efficient wireless communication protocol for intermittently-powered sensor networks. It enables reliable communication between a receiver and multiple batteryless sensors using TDMA-style scheduling and low-power wake-up radios for synchronization. Greentooth employs lightweight and energy-efficient connections that are resilient to transient power outages, while significantly improving network reliability, throughput, and energy efficiency of both the battery-free sensor nodes and the receiver—which could be untethered and energy-constrained. We evaluate Greentooth using a custom-built batteryless sensor prototype on synthetic and real-world energy traces recorded from different locations in a garden across different times of the day. Results show that Greentooth achieves 73% and 283% more throughput compared to AWD MAC and RI-CPT-WUR respectively under intermittent ambient solar energy, and over 2x longer receiver lifetime.</p>\",\"PeriodicalId\":50910,\"journal\":{\"name\":\"ACM Transactions on Sensor Networks\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3649221\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3649221","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Greentooth: Robust and Energy Efficient Wireless Networking for Batteryless Devices
Communication presents a critical challenge for emerging intermittently powered batteryless sensors. Batteryless devices that operate entirely on harvested energy often experience frequent, unpredictable power outages and have trouble keeping time accurately. Consequently, effective communication using today’s low-power wireless network standards and protocols becomes difficult, particularly because existing standards are usually designed to support reliably powered devices with predictable node availability and accurate timekeeping capabilities for connection and congestion management.
In this paper, we present Greentooth, a robust and energy-efficient wireless communication protocol for intermittently-powered sensor networks. It enables reliable communication between a receiver and multiple batteryless sensors using TDMA-style scheduling and low-power wake-up radios for synchronization. Greentooth employs lightweight and energy-efficient connections that are resilient to transient power outages, while significantly improving network reliability, throughput, and energy efficiency of both the battery-free sensor nodes and the receiver—which could be untethered and energy-constrained. We evaluate Greentooth using a custom-built batteryless sensor prototype on synthetic and real-world energy traces recorded from different locations in a garden across different times of the day. Results show that Greentooth achieves 73% and 283% more throughput compared to AWD MAC and RI-CPT-WUR respectively under intermittent ambient solar energy, and over 2x longer receiver lifetime.
期刊介绍:
ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.