D. P. Kasymov, V. V. Perminov, A. A. Shevlyakova, A. S. Yakimov
{"title":"火灾条件下复合材料传热的数学建模","authors":"D. P. Kasymov, V. V. Perminov, A. A. Shevlyakova, A. S. Yakimov","doi":"10.1134/s0018151x23010157","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The article presents a refined mathematical model of thermochemical destruction of a multilayer composite material, which was developed on the basis of theoretical and known experimental results. The consideration of heat overflow across a body allows the state of a protected wood structure has under fire conditions to be predicted in a more accurate manner. The numerical computation results are compared with the known data.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":"28 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical Modeling of Heat Transfer in Composite Materials under Fire Conditions\",\"authors\":\"D. P. Kasymov, V. V. Perminov, A. A. Shevlyakova, A. S. Yakimov\",\"doi\":\"10.1134/s0018151x23010157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The article presents a refined mathematical model of thermochemical destruction of a multilayer composite material, which was developed on the basis of theoretical and known experimental results. The consideration of heat overflow across a body allows the state of a protected wood structure has under fire conditions to be predicted in a more accurate manner. The numerical computation results are compared with the known data.</p>\",\"PeriodicalId\":13163,\"journal\":{\"name\":\"High Temperature\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Temperature\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1134/s0018151x23010157\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0018151x23010157","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Mathematical Modeling of Heat Transfer in Composite Materials under Fire Conditions
Abstract
The article presents a refined mathematical model of thermochemical destruction of a multilayer composite material, which was developed on the basis of theoretical and known experimental results. The consideration of heat overflow across a body allows the state of a protected wood structure has under fire conditions to be predicted in a more accurate manner. The numerical computation results are compared with the known data.
期刊介绍:
High Temperature is an international peer reviewed journal that publishes original papers and reviews written by theoretical and experimental researchers. The journal deals with properties and processes in low-temperature plasma; thermophysical properties of substances including pure materials, mixtures and alloys; the properties in the vicinity of the critical point, equations of state; phase equilibrium; heat and mass transfer phenomena, in particular, by forced and free convections; processes of boiling and condensation, radiation, and complex heat transfer; experimental methods and apparatuses; high-temperature facilities for power engineering applications, etc. The journal reflects the current trends in thermophysical research. It presents the results of present-day experimental and theoretical studies in the processes of complex heat transfer, thermal, gas dynamic processes, and processes of heat and mass transfer, as well as the latest advances in the theoretical description of the properties of high-temperature media.