{"title":"外源褪黑激素对干旱胁迫和补水条件下小麦品质的影响","authors":"Yuanyuan Fu, Penghui Li, Yueping Liang, Zhunyun Si, Shoutian Ma, Yang Gao","doi":"10.1007/s10725-024-01120-6","DOIUrl":null,"url":null,"abstract":"<p>Melatonin (MT) regulates and enhances crop tolerance to drought stress. However, the effect of melatonin spraying on grain quality under drought–rehydration treatment is currently insufficiently evaluated. Here, the present study was conducted by spraying 100 μM MT before wheat grain filling and then drought–rehydration treatment was carried out. Rewatering after drought stress increased the appreciably wet gluten content, sedimentation index, total protein content, and gluten content of wheat grains and decreased the prolainm content, albumin content, and globulin content. And MT application effectively alleviated grain quality damage, reducing wet gluten content and gluten content. In addition, MT compensated for the oxidative damage and the membrane lipid peroxidation damage caused by drought–rehydration treatment. In addition, two drought stresses significantly reduced photosynthetic parameters. And MT effectively improved the photosynthetic efficiency. These results indicated that MT is feasible for enhancing wheat resistance and ameliorating grain quality during drought and rehydration.</p>","PeriodicalId":20412,"journal":{"name":"Plant Growth Regulation","volume":"33 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of exogenous melatonin on wheat quality under drought stress and rehydration\",\"authors\":\"Yuanyuan Fu, Penghui Li, Yueping Liang, Zhunyun Si, Shoutian Ma, Yang Gao\",\"doi\":\"10.1007/s10725-024-01120-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Melatonin (MT) regulates and enhances crop tolerance to drought stress. However, the effect of melatonin spraying on grain quality under drought–rehydration treatment is currently insufficiently evaluated. Here, the present study was conducted by spraying 100 μM MT before wheat grain filling and then drought–rehydration treatment was carried out. Rewatering after drought stress increased the appreciably wet gluten content, sedimentation index, total protein content, and gluten content of wheat grains and decreased the prolainm content, albumin content, and globulin content. And MT application effectively alleviated grain quality damage, reducing wet gluten content and gluten content. In addition, MT compensated for the oxidative damage and the membrane lipid peroxidation damage caused by drought–rehydration treatment. In addition, two drought stresses significantly reduced photosynthetic parameters. And MT effectively improved the photosynthetic efficiency. These results indicated that MT is feasible for enhancing wheat resistance and ameliorating grain quality during drought and rehydration.</p>\",\"PeriodicalId\":20412,\"journal\":{\"name\":\"Plant Growth Regulation\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Growth Regulation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10725-024-01120-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Growth Regulation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10725-024-01120-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Effects of exogenous melatonin on wheat quality under drought stress and rehydration
Melatonin (MT) regulates and enhances crop tolerance to drought stress. However, the effect of melatonin spraying on grain quality under drought–rehydration treatment is currently insufficiently evaluated. Here, the present study was conducted by spraying 100 μM MT before wheat grain filling and then drought–rehydration treatment was carried out. Rewatering after drought stress increased the appreciably wet gluten content, sedimentation index, total protein content, and gluten content of wheat grains and decreased the prolainm content, albumin content, and globulin content. And MT application effectively alleviated grain quality damage, reducing wet gluten content and gluten content. In addition, MT compensated for the oxidative damage and the membrane lipid peroxidation damage caused by drought–rehydration treatment. In addition, two drought stresses significantly reduced photosynthetic parameters. And MT effectively improved the photosynthetic efficiency. These results indicated that MT is feasible for enhancing wheat resistance and ameliorating grain quality during drought and rehydration.
期刊介绍:
Plant Growth Regulation is an international journal publishing original articles on all aspects of plant growth and development. We welcome manuscripts reporting question-based research using hormonal, physiological, environmental, genetical, biophysical, developmental or molecular approaches to the study of plant growth regulation.
Emphasis is placed on papers presenting the results of original research. Occasional reviews on important topics will also be welcome. All contributions must be in English.