机械化学合成的 CdS 纳米粒子的光催化和抗菌性能优于溶热制备的 CdS 纳米粒子

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Semiconductor Science and Technology Pub Date : 2024-02-28 DOI:10.1088/1361-6641/ad2b08
Gairat Burashev, Batukhan Tatykayev, Matej Baláž, Natalya Khan, Ardak Jumagazieva, Zhanar Iskakbayeva, Anar Seysembekova, Saparbek Tugelbay, Nurshat Turgynbay, Almagul Niyazbayeva, Aleksandr Ilin, Mukhambetkali Burkitbayev, Zhandos Shalabayev
{"title":"机械化学合成的 CdS 纳米粒子的光催化和抗菌性能优于溶热制备的 CdS 纳米粒子","authors":"Gairat Burashev, Batukhan Tatykayev, Matej Baláž, Natalya Khan, Ardak Jumagazieva, Zhanar Iskakbayeva, Anar Seysembekova, Saparbek Tugelbay, Nurshat Turgynbay, Almagul Niyazbayeva, Aleksandr Ilin, Mukhambetkali Burkitbayev, Zhandos Shalabayev","doi":"10.1088/1361-6641/ad2b08","DOIUrl":null,"url":null,"abstract":"In this work, we have developed a facile, dry, and environmentally friendly mechanochemical method for the synthesis of cadmium sulfide (m-CdS) nanoparticles in a planetary ball mill using non-toxic precursors. Thiourea was for the first time used as a precursor of sulfide ion in room temperature solid state ball milling synthesis. For comparison of the mechanochemical approach with others, cadmium sulfide nanoparticles were also prepared using the solvothermal method (s-CdS). The crystal structure of cadmium sulfide nanoparticles was studied by XRD, the qualitative chemical band properties were examined by Raman scattering and x-ray photoelectron spectroscopy analysis, and particle morphology and microstructure were investigated by scanning electron microscopy and transmission electron microscopy methods. The sizes of the m-CdS nanoparticles had 5–6 nm in diameter, which is 10 times smaller than the diameter of s-CdS nanorods. The photocatalytic activities of as-prepared cadmium sulfide nanoparticles on the dye degradation and hydrogen production by water splitting were evaluated and the antibacterial activities were also tested. The photocatalytic activity of m-CdS was superior to that of s-CdS in the degradation of Orange II under visible light irradiation. Better results for m-CdS were also evidenced in photocatalytic experiments on hydrogen generation. The maximum rate of hydrogen evolution for m-CdS was 191.9 <italic toggle=\"yes\">µ</italic>molg<sup>−1</sup>h<sup>−1</sup> at the 120th min,while this indicator for s-CdS was only 58.0 <italic toggle=\"yes\">µ</italic>molg<sup>−1</sup>h<sup>−1</sup> at the same irradiation time.The better effect of m-CdS was evidenced also in an antibacterial study (namely against gram-positive bacteria).","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"28 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The superiority of the photocatalytic and antibacterial performance of mechanochemically synthesized CdS nanoparticles over solvothermal-prepared ones\",\"authors\":\"Gairat Burashev, Batukhan Tatykayev, Matej Baláž, Natalya Khan, Ardak Jumagazieva, Zhanar Iskakbayeva, Anar Seysembekova, Saparbek Tugelbay, Nurshat Turgynbay, Almagul Niyazbayeva, Aleksandr Ilin, Mukhambetkali Burkitbayev, Zhandos Shalabayev\",\"doi\":\"10.1088/1361-6641/ad2b08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we have developed a facile, dry, and environmentally friendly mechanochemical method for the synthesis of cadmium sulfide (m-CdS) nanoparticles in a planetary ball mill using non-toxic precursors. Thiourea was for the first time used as a precursor of sulfide ion in room temperature solid state ball milling synthesis. For comparison of the mechanochemical approach with others, cadmium sulfide nanoparticles were also prepared using the solvothermal method (s-CdS). The crystal structure of cadmium sulfide nanoparticles was studied by XRD, the qualitative chemical band properties were examined by Raman scattering and x-ray photoelectron spectroscopy analysis, and particle morphology and microstructure were investigated by scanning electron microscopy and transmission electron microscopy methods. The sizes of the m-CdS nanoparticles had 5–6 nm in diameter, which is 10 times smaller than the diameter of s-CdS nanorods. The photocatalytic activities of as-prepared cadmium sulfide nanoparticles on the dye degradation and hydrogen production by water splitting were evaluated and the antibacterial activities were also tested. The photocatalytic activity of m-CdS was superior to that of s-CdS in the degradation of Orange II under visible light irradiation. Better results for m-CdS were also evidenced in photocatalytic experiments on hydrogen generation. The maximum rate of hydrogen evolution for m-CdS was 191.9 <italic toggle=\\\"yes\\\">µ</italic>molg<sup>−1</sup>h<sup>−1</sup> at the 120th min,while this indicator for s-CdS was only 58.0 <italic toggle=\\\"yes\\\">µ</italic>molg<sup>−1</sup>h<sup>−1</sup> at the same irradiation time.The better effect of m-CdS was evidenced also in an antibacterial study (namely against gram-positive bacteria).\",\"PeriodicalId\":21585,\"journal\":{\"name\":\"Semiconductor Science and Technology\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semiconductor Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6641/ad2b08\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad2b08","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们开发了一种简便、干燥、环保的机械化学方法,利用无毒前体在行星球磨机中合成硫化镉(m-CdS)纳米粒子。硫脲首次被用作室温固态球磨合成中硫化离子的前体。为了将该机械化学方法与其他方法进行比较,还使用溶热法制备了硫化镉纳米粒子(s-CdS)。利用 XRD 研究了硫化镉纳米粒子的晶体结构,利用拉曼散射和 X 射线光电子能谱分析研究了其定性化学带特性,并利用扫描电子显微镜和透射电子显微镜研究了粒子的形貌和微观结构。m-CdS 纳米颗粒的直径为 5-6 nm,是 s-CdS 纳米棒直径的 10 倍。评估了制备的硫化镉纳米粒子对染料降解和分水制氢的光催化活性,并测试了其抗菌活性。在可见光照射下,m-CdS 降解橙 II 的光催化活性优于 s-CdS。m-CdS 在光催化制氢实验中也取得了更好的结果。在第 120 分钟时,m-CdS 的最大氢进化速率为 191.9 µmolg-1h-1,而在相同的照射时间内,s-CdS 的这一指标仅为 58.0 µmolg-1h-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The superiority of the photocatalytic and antibacterial performance of mechanochemically synthesized CdS nanoparticles over solvothermal-prepared ones
In this work, we have developed a facile, dry, and environmentally friendly mechanochemical method for the synthesis of cadmium sulfide (m-CdS) nanoparticles in a planetary ball mill using non-toxic precursors. Thiourea was for the first time used as a precursor of sulfide ion in room temperature solid state ball milling synthesis. For comparison of the mechanochemical approach with others, cadmium sulfide nanoparticles were also prepared using the solvothermal method (s-CdS). The crystal structure of cadmium sulfide nanoparticles was studied by XRD, the qualitative chemical band properties were examined by Raman scattering and x-ray photoelectron spectroscopy analysis, and particle morphology and microstructure were investigated by scanning electron microscopy and transmission electron microscopy methods. The sizes of the m-CdS nanoparticles had 5–6 nm in diameter, which is 10 times smaller than the diameter of s-CdS nanorods. The photocatalytic activities of as-prepared cadmium sulfide nanoparticles on the dye degradation and hydrogen production by water splitting were evaluated and the antibacterial activities were also tested. The photocatalytic activity of m-CdS was superior to that of s-CdS in the degradation of Orange II under visible light irradiation. Better results for m-CdS were also evidenced in photocatalytic experiments on hydrogen generation. The maximum rate of hydrogen evolution for m-CdS was 191.9 µmolg−1h−1 at the 120th min,while this indicator for s-CdS was only 58.0 µmolg−1h−1 at the same irradiation time.The better effect of m-CdS was evidenced also in an antibacterial study (namely against gram-positive bacteria).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Semiconductor Science and Technology
Semiconductor Science and Technology 工程技术-材料科学:综合
CiteScore
4.30
自引率
5.30%
发文量
216
审稿时长
2.4 months
期刊介绍: Devoted to semiconductor research, Semiconductor Science and Technology''s multidisciplinary approach reflects the far-reaching nature of this topic. The scope of the journal covers fundamental and applied experimental and theoretical studies of the properties of non-organic, organic and oxide semiconductors, their interfaces and devices, including: fundamental properties materials and nanostructures devices and applications fabrication and processing new analytical techniques simulation emerging fields: materials and devices for quantum technologies hybrid structures and devices 2D and topological materials metamaterials semiconductors for energy flexible electronics.
期刊最新文献
Effect of atomic layer deposition process parameters on TiN electrode for Hf0.5Zr0.5O2 ferroelectric capacitor The ab initio study of n-type nitrogen and gallium co-doped diamond Self-powered Schottky barrier photodetector with high responsivity based on homoepitaxial Ga2O3 films by MOCVD Sub-bandgap excited photoluminescence probing of deep defect complexes in GaN doped by Si, Ge and C impurities The effect of temperature on the electrical characteristics of zigzag and armchair black phosphorus based 2D MOSFET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1