CrackTinyNet:专为微小路面裂缝检测的卓越性能而设计的新型深度学习模型

IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IET Intelligent Transport Systems Pub Date : 2024-02-27 DOI:10.1049/itr2.12497
Haitao Li, Tao Peng, Ningguo Qiao, Zhiwei Guan, Xinyun Feng, Peng Guo, Tingting Duan, Jinfeng Gong
{"title":"CrackTinyNet:专为微小路面裂缝检测的卓越性能而设计的新型深度学习模型","authors":"Haitao Li, Tao Peng, Ningguo Qiao, Zhiwei Guan, Xinyun Feng, Peng Guo, Tingting Duan, Jinfeng Gong","doi":"10.1049/itr2.12497","DOIUrl":null,"url":null,"abstract":"With the rapid advancement of highway construction, the maintenance of highway infrastructure has become particularly vital. During highway maintenance, the effective detection of tiny road surface cracks helps to extend the lifespan of roads and enhance traffic efficiency and safety. To elevate the performance of existing road detection models, the CrackTinyNet (CrTNet) algorithm is specifically proposed for detecting tiny road surface cracks. This algorithm utilizes the novel BiFormer general visual transformer, designed expressly for tiny objects, and optimizes the loss function to a normalized Wasserstein distance loss function. It replaces traditional downsampling with Space-to-Depth Conv to prevent the excessive loss of tiny object information in the network structure. To highlight the model's advantage in detecting tiny road cracks, ablation experiments and comparison trials were conducted with mainstream deep learning models for crack detection. The results of the ablation experiments show that, compared to the baseline, CrTNet improved the Mean Average Precision (MAP) by 0.22. When compared to other network models suitable for road detection, these results exhibited an improvement of over 8.9%. In conclusion, the CrTNet proposed in this study enables a more accurate detection of tiny road cracks, playing a significant role in the advancement of intelligent traffic management.","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"34 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CrackTinyNet: A novel deep learning model specifically designed for superior performance in tiny road surface crack detection\",\"authors\":\"Haitao Li, Tao Peng, Ningguo Qiao, Zhiwei Guan, Xinyun Feng, Peng Guo, Tingting Duan, Jinfeng Gong\",\"doi\":\"10.1049/itr2.12497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid advancement of highway construction, the maintenance of highway infrastructure has become particularly vital. During highway maintenance, the effective detection of tiny road surface cracks helps to extend the lifespan of roads and enhance traffic efficiency and safety. To elevate the performance of existing road detection models, the CrackTinyNet (CrTNet) algorithm is specifically proposed for detecting tiny road surface cracks. This algorithm utilizes the novel BiFormer general visual transformer, designed expressly for tiny objects, and optimizes the loss function to a normalized Wasserstein distance loss function. It replaces traditional downsampling with Space-to-Depth Conv to prevent the excessive loss of tiny object information in the network structure. To highlight the model's advantage in detecting tiny road cracks, ablation experiments and comparison trials were conducted with mainstream deep learning models for crack detection. The results of the ablation experiments show that, compared to the baseline, CrTNet improved the Mean Average Precision (MAP) by 0.22. When compared to other network models suitable for road detection, these results exhibited an improvement of over 8.9%. In conclusion, the CrTNet proposed in this study enables a more accurate detection of tiny road cracks, playing a significant role in the advancement of intelligent traffic management.\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1049/itr2.12497\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1049/itr2.12497","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着公路建设的快速发展,公路基础设施的维护变得尤为重要。在公路养护过程中,有效检测路面微小裂缝有助于延长公路的使用寿命,提高交通效率和安全性。为了提高现有道路检测模型的性能,我们特别提出了用于检测微小路面裂缝的 CrackTinyNet(CrTNet)算法。该算法利用专为微小物体设计的新型 BiFormer 通用视觉变换器,并将损失函数优化为归一化 Wasserstein 距离损失函数。它用空间-深度 Conv 取代了传统的下采样,以防止网络结构中微小物体信息的过度丢失。为了突出该模型在检测微小路面裂缝方面的优势,我们进行了烧蚀实验,并与主流的裂缝检测深度学习模型进行了对比试验。消融实验结果表明,与基线相比,CrTNet 的平均精度(MAP)提高了 0.22。与其他适用于道路检测的网络模型相比,这些结果提高了 8.9% 以上。总之,本研究提出的 CrTNet 能够更准确地检测微小的道路裂缝,在推进智能交通管理方面发挥了重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CrackTinyNet: A novel deep learning model specifically designed for superior performance in tiny road surface crack detection
With the rapid advancement of highway construction, the maintenance of highway infrastructure has become particularly vital. During highway maintenance, the effective detection of tiny road surface cracks helps to extend the lifespan of roads and enhance traffic efficiency and safety. To elevate the performance of existing road detection models, the CrackTinyNet (CrTNet) algorithm is specifically proposed for detecting tiny road surface cracks. This algorithm utilizes the novel BiFormer general visual transformer, designed expressly for tiny objects, and optimizes the loss function to a normalized Wasserstein distance loss function. It replaces traditional downsampling with Space-to-Depth Conv to prevent the excessive loss of tiny object information in the network structure. To highlight the model's advantage in detecting tiny road cracks, ablation experiments and comparison trials were conducted with mainstream deep learning models for crack detection. The results of the ablation experiments show that, compared to the baseline, CrTNet improved the Mean Average Precision (MAP) by 0.22. When compared to other network models suitable for road detection, these results exhibited an improvement of over 8.9%. In conclusion, the CrTNet proposed in this study enables a more accurate detection of tiny road cracks, playing a significant role in the advancement of intelligent traffic management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
期刊最新文献
Exploring changes in residents' daily activity patterns through sequence visualization analysis Multispectral pedestrian detection based on feature complementation and enhancement Self-supervised vessel trajectory segmentation via learning spatio-temporal semantics Optimizing customized bus services for multi-trip urban passengers: A bi-objective approach Assessing the performance of a hybrid max-weight traffic signal control algorithm in the presence of noisy queue information: An evaluation of the environmental impacts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1