层状复合材料应变能密度和蔡武指数的神经网络建模

IF 2.3 3区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES Journal of Composite Materials Pub Date : 2024-02-28 DOI:10.1177/00219983241235856
Elías Ledesma-Orozco, Julio C. Galvis-Chacón, Alejandro E. Rodríguez-Sánchez
{"title":"层状复合材料应变能密度和蔡武指数的神经网络建模","authors":"Elías Ledesma-Orozco, Julio C. Galvis-Chacón, Alejandro E. Rodríguez-Sánchez","doi":"10.1177/00219983241235856","DOIUrl":null,"url":null,"abstract":"In laminated composite materials design, optimization mainly targets the stacking sequence configuration, which is defined by the lamina thickness and fiber orientations within each layer. Recent studies emphasize the increasing role of Machine Learning in promoting innovative composite designs by facilitating the accurate modeling of essential properties such as strength and stiffness. This study introduces two metamodels that utilize feed-forward artificial neural networks, taking laminate thickness and fiber steering angles as input parameters. The output variables, including strain energy density and the Tsai-Wu failure index, enable the prediction of stacking sequence configurations for laminated materials, a capability confirmed in a case study. The results showcase neural network models with the ability to predict these variables, achieving coefficients of determination above 0.90 for testing data. Consequently, this modeling approach has the potential to be a tool for designers, aiding in decision-making processes for the subsequent optimization of stiffness and strength in structural components made of laminated composite materials.","PeriodicalId":15489,"journal":{"name":"Journal of Composite Materials","volume":"35 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural networks modeling of strain energy density and Tsai-Wu index in laminated composites\",\"authors\":\"Elías Ledesma-Orozco, Julio C. Galvis-Chacón, Alejandro E. Rodríguez-Sánchez\",\"doi\":\"10.1177/00219983241235856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In laminated composite materials design, optimization mainly targets the stacking sequence configuration, which is defined by the lamina thickness and fiber orientations within each layer. Recent studies emphasize the increasing role of Machine Learning in promoting innovative composite designs by facilitating the accurate modeling of essential properties such as strength and stiffness. This study introduces two metamodels that utilize feed-forward artificial neural networks, taking laminate thickness and fiber steering angles as input parameters. The output variables, including strain energy density and the Tsai-Wu failure index, enable the prediction of stacking sequence configurations for laminated materials, a capability confirmed in a case study. The results showcase neural network models with the ability to predict these variables, achieving coefficients of determination above 0.90 for testing data. Consequently, this modeling approach has the potential to be a tool for designers, aiding in decision-making processes for the subsequent optimization of stiffness and strength in structural components made of laminated composite materials.\",\"PeriodicalId\":15489,\"journal\":{\"name\":\"Journal of Composite Materials\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/00219983241235856\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00219983241235856","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

在层压复合材料设计中,优化主要针对堆叠顺序配置,而堆叠顺序配置是由每层内的薄片厚度和纤维取向决定的。最近的研究强调,机器学习通过促进强度和刚度等基本属性的精确建模,在促进创新复合材料设计方面发挥着越来越重要的作用。本研究引入了两个元模型,利用前馈式人工神经网络,将层板厚度和纤维转向角作为输入参数。输出变量包括应变能密度和蔡-吴失效指数,能够预测层压材料的堆叠顺序配置,这一能力在案例研究中得到了证实。研究结果表明,神经网络模型具有预测这些变量的能力,测试数据的决定系数超过 0.90。因此,这种建模方法有可能成为设计人员的工具,有助于决策过程,进而优化层压复合材料结构组件的刚度和强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural networks modeling of strain energy density and Tsai-Wu index in laminated composites
In laminated composite materials design, optimization mainly targets the stacking sequence configuration, which is defined by the lamina thickness and fiber orientations within each layer. Recent studies emphasize the increasing role of Machine Learning in promoting innovative composite designs by facilitating the accurate modeling of essential properties such as strength and stiffness. This study introduces two metamodels that utilize feed-forward artificial neural networks, taking laminate thickness and fiber steering angles as input parameters. The output variables, including strain energy density and the Tsai-Wu failure index, enable the prediction of stacking sequence configurations for laminated materials, a capability confirmed in a case study. The results showcase neural network models with the ability to predict these variables, achieving coefficients of determination above 0.90 for testing data. Consequently, this modeling approach has the potential to be a tool for designers, aiding in decision-making processes for the subsequent optimization of stiffness and strength in structural components made of laminated composite materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Composite Materials
Journal of Composite Materials 工程技术-材料科学:复合
CiteScore
5.40
自引率
6.90%
发文量
274
审稿时长
6.8 months
期刊介绍: Consistently ranked in the top 10 of the Thomson Scientific JCR, the Journal of Composite Materials publishes peer reviewed, original research papers from internationally renowned composite materials specialists from industry, universities and research organizations, featuring new advances in materials, processing, design, analysis, testing, performance and applications. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Micromechanics-based multi-scale framework with strain-rate effects for the simulation of ballistic impact on composite laminates Recycling catfish bone for additive manufacturing of silicone composite structures Mechanical performances of unsatured polyester composite reinforced by OleaEuropea var. Sylvestris fibers: Characterization, modeling and optimization of fiber textural properties Elastic properties identification of a bio-based material in tertiary packaging: Tools and methods development Parametric process optimisation of automated fibre placement (AFP) based AS4/APC-2 composites for mode I and mode II fracture toughness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1