二氧化硅原子层沉积钝化层厚度对氮化镓基绿色微型发光二极管的影响

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-02-28 DOI:10.1088/1361-6641/ad2b0a
Youcai Deng, Jinlan Chen, Saijun Li, He Huang, Zhong Liu, Zijun Yan, Shouqiang Lai, Lijie Zheng, Tianzhi Yang, Zhong Chen, Tingzhu Wu
{"title":"二氧化硅原子层沉积钝化层厚度对氮化镓基绿色微型发光二极管的影响","authors":"Youcai Deng, Jinlan Chen, Saijun Li, He Huang, Zhong Liu, Zijun Yan, Shouqiang Lai, Lijie Zheng, Tianzhi Yang, Zhong Chen, Tingzhu Wu","doi":"10.1088/1361-6641/ad2b0a","DOIUrl":null,"url":null,"abstract":"In this study, we fabricated 76 × 127 <italic toggle=\"yes\">µ</italic>m<sup>2</sup> green GaN-based micro-light-emitting-diodes (micro-LEDs) with atomic-layer-deposited (ALD) SiO<sub>2</sub> passivation layers whose thicknesses were 0, 15, and 100 nm. The optoelectrical and communication performances of these devices were measured and analysed. The current-voltage results showed that ALD technology reduced the leakage current and enhanced the forward current of micro-LEDs. Compared with those of micro-LEDs without the passivation layer, the external quantum efficiency of micro-LEDs with 15 and 100 nm-thick SiO<sub>2</sub> passivation layers increased by 23.64% and 19.47%, respectively. Furthermore, analysis of the EQE of the samples at room temperature using the ABC + <italic toggle=\"yes\">f</italic>(n) model revealed the differences in the physical mechanisms of green micro-LEDs. Moreover, the communication performance indicated that ALD sidewall passivation reduced the carrier lifetime and improved the communication performance of green micro-LEDs.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impacts of SiO2 atomic-layer-deposited passivation layer thickness on GaN-based green micro-LEDs\",\"authors\":\"Youcai Deng, Jinlan Chen, Saijun Li, He Huang, Zhong Liu, Zijun Yan, Shouqiang Lai, Lijie Zheng, Tianzhi Yang, Zhong Chen, Tingzhu Wu\",\"doi\":\"10.1088/1361-6641/ad2b0a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we fabricated 76 × 127 <italic toggle=\\\"yes\\\">µ</italic>m<sup>2</sup> green GaN-based micro-light-emitting-diodes (micro-LEDs) with atomic-layer-deposited (ALD) SiO<sub>2</sub> passivation layers whose thicknesses were 0, 15, and 100 nm. The optoelectrical and communication performances of these devices were measured and analysed. The current-voltage results showed that ALD technology reduced the leakage current and enhanced the forward current of micro-LEDs. Compared with those of micro-LEDs without the passivation layer, the external quantum efficiency of micro-LEDs with 15 and 100 nm-thick SiO<sub>2</sub> passivation layers increased by 23.64% and 19.47%, respectively. Furthermore, analysis of the EQE of the samples at room temperature using the ABC + <italic toggle=\\\"yes\\\">f</italic>(n) model revealed the differences in the physical mechanisms of green micro-LEDs. Moreover, the communication performance indicated that ALD sidewall passivation reduced the carrier lifetime and improved the communication performance of green micro-LEDs.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6641/ad2b0a\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad2b0a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们制作了 76 × 127 µm2 绿色氮化镓基微型发光二极管(micro-LED),其原子层沉积(ALD)二氧化硅钝化层的厚度分别为 0、15 和 100 nm。对这些器件的光电和通信性能进行了测量和分析。电流-电压结果表明,ALD 技术降低了微型 LED 的漏电流,提高了正向电流。与没有钝化层的微型 LED 相比,具有 15 nm 和 100 nm 厚 SiO2 钝化层的微型 LED 的外部量子效率分别提高了 23.64% 和 19.47%。此外,利用 ABC + f(n) 模型分析了样品在室温下的 EQE,揭示了绿色微型 LED 物理机制的差异。此外,通信性能表明,ALD 侧壁钝化降低了绿色微型 LED 的载流子寿命,提高了其通信性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The impacts of SiO2 atomic-layer-deposited passivation layer thickness on GaN-based green micro-LEDs
In this study, we fabricated 76 × 127 µm2 green GaN-based micro-light-emitting-diodes (micro-LEDs) with atomic-layer-deposited (ALD) SiO2 passivation layers whose thicknesses were 0, 15, and 100 nm. The optoelectrical and communication performances of these devices were measured and analysed. The current-voltage results showed that ALD technology reduced the leakage current and enhanced the forward current of micro-LEDs. Compared with those of micro-LEDs without the passivation layer, the external quantum efficiency of micro-LEDs with 15 and 100 nm-thick SiO2 passivation layers increased by 23.64% and 19.47%, respectively. Furthermore, analysis of the EQE of the samples at room temperature using the ABC + f(n) model revealed the differences in the physical mechanisms of green micro-LEDs. Moreover, the communication performance indicated that ALD sidewall passivation reduced the carrier lifetime and improved the communication performance of green micro-LEDs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Intentions to move abroad among medical students: a cross-sectional study to investigate determinants and opinions. The change process questionnaire (CPQ): A psychometric validation. Prevalence and predictors of hand hygiene compliance in clinical, surgical and intensive care unit wards: results of a second cross-sectional study at the Umberto I teaching hospital of Rome. The prevention of medication errors in the home care setting: a scoping review. Differential Costs of Raising Grandchildren on Older Mother-Adult Child Relations in Black and White Families.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1