{"title":"非实数生成的不变集处处致密","authors":"Artūras Dubickas","doi":"10.1017/prm.2024.22","DOIUrl":null,"url":null,"abstract":"A set of complex numbers <jats:inline-formula> <jats:alternatives> <jats:tex-math>$S$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline1.png\" /> </jats:alternatives> </jats:inline-formula> is called invariant if it is closed under addition and multiplication, namely, for any <jats:inline-formula> <jats:alternatives> <jats:tex-math>$x, y \\in S$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline2.png\" /> </jats:alternatives> </jats:inline-formula> we have <jats:inline-formula> <jats:alternatives> <jats:tex-math>$x+y \\in S$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline3.png\" /> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$xy \\in S$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline4.png\" /> </jats:alternatives> </jats:inline-formula>. For each <jats:inline-formula> <jats:alternatives> <jats:tex-math>$s \\in {\\mathbb {C}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline5.png\" /> </jats:alternatives> </jats:inline-formula> the smallest invariant set <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\mathbb {N}}[s]$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline6.png\" /> </jats:alternatives> </jats:inline-formula> containing <jats:inline-formula> <jats:alternatives> <jats:tex-math>$s$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline7.png\" /> </jats:alternatives> </jats:inline-formula> consists of all possible sums <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\sum _{i \\in I} a_i s^i$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline8.png\" /> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$I$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline9.png\" /> </jats:alternatives> </jats:inline-formula> runs over all finite nonempty subsets of the set of positive integers <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\mathbb {N}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline10.png\" /> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$a_i \\in {\\mathbb {N}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline11.png\" /> </jats:alternatives> </jats:inline-formula> for each <jats:inline-formula> <jats:alternatives> <jats:tex-math>$i \\in I$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline12.png\" /> </jats:alternatives> </jats:inline-formula>. In this paper, we prove that for <jats:inline-formula> <jats:alternatives> <jats:tex-math>$s \\in {\\mathbb {C}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline13.png\" /> </jats:alternatives> </jats:inline-formula> the set <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\mathbb {N}}[s]$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline14.png\" /> </jats:alternatives> </jats:inline-formula> is everywhere dense in <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\mathbb {C}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline15.png\" /> </jats:alternatives> </jats:inline-formula> if and only if <jats:inline-formula> <jats:alternatives> <jats:tex-math>$s \\notin {\\mathbb {R}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline16.png\" /> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$s$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline17.png\" /> </jats:alternatives> </jats:inline-formula> is not a quadratic algebraic integer. More precisely, we show that if <jats:inline-formula> <jats:alternatives> <jats:tex-math>$s \\in {\\mathbb {C}} \\setminus {\\mathbb {R}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline18.png\" /> </jats:alternatives> </jats:inline-formula> is a transcendental number, then there is a positive integer <jats:inline-formula> <jats:alternatives> <jats:tex-math>$n$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline19.png\" /> </jats:alternatives> </jats:inline-formula> such that the sumset <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\mathbb {N}} t^n+{\\mathbb {N}} t^{2n} +{\\mathbb {N}} t^{3n}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline20.png\" /> </jats:alternatives> </jats:inline-formula> is everywhere dense in <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\mathbb {C}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline21.png\" /> </jats:alternatives> </jats:inline-formula> for either <jats:inline-formula> <jats:alternatives> <jats:tex-math>$t=s$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline22.png\" /> </jats:alternatives> </jats:inline-formula> or <jats:inline-formula> <jats:alternatives> <jats:tex-math>$t=s+s^2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline23.png\" /> </jats:alternatives> </jats:inline-formula>. Similarly, if <jats:inline-formula> <jats:alternatives> <jats:tex-math>$s \\in {\\mathbb {C}} \\setminus {\\mathbb {R}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline24.png\" /> </jats:alternatives> </jats:inline-formula> is an algebraic number of degree <jats:inline-formula> <jats:alternatives> <jats:tex-math>$d \\ne 2, 4$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline25.png\" /> </jats:alternatives> </jats:inline-formula>, then there are positive integers <jats:inline-formula> <jats:alternatives> <jats:tex-math>$n, m$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline26.png\" /> </jats:alternatives> </jats:inline-formula> such that the sumset <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\mathbb {N}} t^n+{\\mathbb {N}} t^{2n} +{\\mathbb {N}} t^{3n}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline27.png\" /> </jats:alternatives> </jats:inline-formula> is everywhere dense in <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\mathbb {C}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline28.png\" /> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:tex-math>$t=ms+s^2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline29.png\" /> </jats:alternatives> </jats:inline-formula>. For quadratic and some special quartic algebraic numbers <jats:inline-formula> <jats:alternatives> <jats:tex-math>$s$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline30.png\" /> </jats:alternatives> </jats:inline-formula> it is shown that a similar sumset of three sets cannot be dense. In each of these two cases the density of <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\mathbb {N}}[s]$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline31.png\" /> </jats:alternatives> </jats:inline-formula> in <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\mathbb {C}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000222_inline32.png\" /> </jats:alternatives> </jats:inline-formula> is established by a different method: for those special quartic numbers, it is possible to take a sumset of four sets.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"3 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant set generated by a nonreal number is everywhere dense\",\"authors\":\"Artūras Dubickas\",\"doi\":\"10.1017/prm.2024.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A set of complex numbers <jats:inline-formula> <jats:alternatives> <jats:tex-math>$S$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline1.png\\\" /> </jats:alternatives> </jats:inline-formula> is called invariant if it is closed under addition and multiplication, namely, for any <jats:inline-formula> <jats:alternatives> <jats:tex-math>$x, y \\\\in S$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline2.png\\\" /> </jats:alternatives> </jats:inline-formula> we have <jats:inline-formula> <jats:alternatives> <jats:tex-math>$x+y \\\\in S$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline3.png\\\" /> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$xy \\\\in S$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline4.png\\\" /> </jats:alternatives> </jats:inline-formula>. For each <jats:inline-formula> <jats:alternatives> <jats:tex-math>$s \\\\in {\\\\mathbb {C}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline5.png\\\" /> </jats:alternatives> </jats:inline-formula> the smallest invariant set <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\\\mathbb {N}}[s]$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline6.png\\\" /> </jats:alternatives> </jats:inline-formula> containing <jats:inline-formula> <jats:alternatives> <jats:tex-math>$s$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline7.png\\\" /> </jats:alternatives> </jats:inline-formula> consists of all possible sums <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\sum _{i \\\\in I} a_i s^i$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline8.png\\\" /> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$I$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline9.png\\\" /> </jats:alternatives> </jats:inline-formula> runs over all finite nonempty subsets of the set of positive integers <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\\\mathbb {N}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline10.png\\\" /> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$a_i \\\\in {\\\\mathbb {N}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline11.png\\\" /> </jats:alternatives> </jats:inline-formula> for each <jats:inline-formula> <jats:alternatives> <jats:tex-math>$i \\\\in I$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline12.png\\\" /> </jats:alternatives> </jats:inline-formula>. In this paper, we prove that for <jats:inline-formula> <jats:alternatives> <jats:tex-math>$s \\\\in {\\\\mathbb {C}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline13.png\\\" /> </jats:alternatives> </jats:inline-formula> the set <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\\\mathbb {N}}[s]$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline14.png\\\" /> </jats:alternatives> </jats:inline-formula> is everywhere dense in <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\\\mathbb {C}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline15.png\\\" /> </jats:alternatives> </jats:inline-formula> if and only if <jats:inline-formula> <jats:alternatives> <jats:tex-math>$s \\\\notin {\\\\mathbb {R}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline16.png\\\" /> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$s$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline17.png\\\" /> </jats:alternatives> </jats:inline-formula> is not a quadratic algebraic integer. More precisely, we show that if <jats:inline-formula> <jats:alternatives> <jats:tex-math>$s \\\\in {\\\\mathbb {C}} \\\\setminus {\\\\mathbb {R}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline18.png\\\" /> </jats:alternatives> </jats:inline-formula> is a transcendental number, then there is a positive integer <jats:inline-formula> <jats:alternatives> <jats:tex-math>$n$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline19.png\\\" /> </jats:alternatives> </jats:inline-formula> such that the sumset <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\\\mathbb {N}} t^n+{\\\\mathbb {N}} t^{2n} +{\\\\mathbb {N}} t^{3n}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline20.png\\\" /> </jats:alternatives> </jats:inline-formula> is everywhere dense in <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\\\mathbb {C}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline21.png\\\" /> </jats:alternatives> </jats:inline-formula> for either <jats:inline-formula> <jats:alternatives> <jats:tex-math>$t=s$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline22.png\\\" /> </jats:alternatives> </jats:inline-formula> or <jats:inline-formula> <jats:alternatives> <jats:tex-math>$t=s+s^2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline23.png\\\" /> </jats:alternatives> </jats:inline-formula>. Similarly, if <jats:inline-formula> <jats:alternatives> <jats:tex-math>$s \\\\in {\\\\mathbb {C}} \\\\setminus {\\\\mathbb {R}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline24.png\\\" /> </jats:alternatives> </jats:inline-formula> is an algebraic number of degree <jats:inline-formula> <jats:alternatives> <jats:tex-math>$d \\\\ne 2, 4$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline25.png\\\" /> </jats:alternatives> </jats:inline-formula>, then there are positive integers <jats:inline-formula> <jats:alternatives> <jats:tex-math>$n, m$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline26.png\\\" /> </jats:alternatives> </jats:inline-formula> such that the sumset <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\\\mathbb {N}} t^n+{\\\\mathbb {N}} t^{2n} +{\\\\mathbb {N}} t^{3n}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline27.png\\\" /> </jats:alternatives> </jats:inline-formula> is everywhere dense in <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\\\mathbb {C}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline28.png\\\" /> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:tex-math>$t=ms+s^2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline29.png\\\" /> </jats:alternatives> </jats:inline-formula>. For quadratic and some special quartic algebraic numbers <jats:inline-formula> <jats:alternatives> <jats:tex-math>$s$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline30.png\\\" /> </jats:alternatives> </jats:inline-formula> it is shown that a similar sumset of three sets cannot be dense. In each of these two cases the density of <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\\\mathbb {N}}[s]$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline31.png\\\" /> </jats:alternatives> </jats:inline-formula> in <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\\\mathbb {C}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000222_inline32.png\\\" /> </jats:alternatives> </jats:inline-formula> is established by a different method: for those special quartic numbers, it is possible to take a sumset of four sets.\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.22\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.22","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Invariant set generated by a nonreal number is everywhere dense
A set of complex numbers $S$ is called invariant if it is closed under addition and multiplication, namely, for any $x, y \in S$ we have $x+y \in S$ and $xy \in S$. For each $s \in {\mathbb {C}}$ the smallest invariant set ${\mathbb {N}}[s]$ containing $s$ consists of all possible sums $\sum _{i \in I} a_i s^i$, where $I$ runs over all finite nonempty subsets of the set of positive integers ${\mathbb {N}}$ and $a_i \in {\mathbb {N}}$ for each $i \in I$. In this paper, we prove that for $s \in {\mathbb {C}}$ the set ${\mathbb {N}}[s]$ is everywhere dense in ${\mathbb {C}}$ if and only if $s \notin {\mathbb {R}}$ and $s$ is not a quadratic algebraic integer. More precisely, we show that if $s \in {\mathbb {C}} \setminus {\mathbb {R}}$ is a transcendental number, then there is a positive integer $n$ such that the sumset ${\mathbb {N}} t^n+{\mathbb {N}} t^{2n} +{\mathbb {N}} t^{3n}$ is everywhere dense in ${\mathbb {C}}$ for either $t=s$ or $t=s+s^2$. Similarly, if $s \in {\mathbb {C}} \setminus {\mathbb {R}}$ is an algebraic number of degree $d \ne 2, 4$, then there are positive integers $n, m$ such that the sumset ${\mathbb {N}} t^n+{\mathbb {N}} t^{2n} +{\mathbb {N}} t^{3n}$ is everywhere dense in ${\mathbb {C}}$ for $t=ms+s^2$. For quadratic and some special quartic algebraic numbers $s$ it is shown that a similar sumset of three sets cannot be dense. In each of these two cases the density of ${\mathbb {N}}[s]$ in ${\mathbb {C}}$ is established by a different method: for those special quartic numbers, it is possible to take a sumset of four sets.
期刊介绍:
A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations.
An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.