Marine Wojcieszak, Laurent Fontaine, Jan Elsen, Roald Hayen, Alexander Lehouck, Mathieu Boudin
{"title":"用于放射性碳年代测定的历史石灰砂浆成分和术语--基于薄片岩相和阴极射线的案例研究","authors":"Marine Wojcieszak, Laurent Fontaine, Jan Elsen, Roald Hayen, Alexander Lehouck, Mathieu Boudin","doi":"10.1017/rdc.2024.14","DOIUrl":null,"url":null,"abstract":"Since the first developments of anthropogenic lime materials radiocarbon (<jats:sup>14</jats:sup>C) dating in the 1960s, numerous studies have been undertaken and developed to investigate the topic further. Historic mortars are complex composite and open system materials that can incorporate a large range of components. Due to the complexity of the historic lime mortars composition, they are not part of a routine protocol in most radiocarbon laboratories and reliable dating is not always achieved. A thorough characterization needs to be performed and different preparation methods can be considered as a function of their compositions. A vast range of terms are employed to qualify the lime mortars components and alterations that can possibly have an influence on the dating result. Here, a detailed description of these components and the various terms used is listed. To illustrate this, images obtained by thin-section petrography and cathodoluminescence are presented in addition to radiocarbon results using stepwise acid hydrolysis on Belgian mortars having different provenance, state, age and composition. Depending on the type of aggregate used, the type of binder and its conservation state, the eventual presence of weathering carbonates and the assumed speed of the carbonation process, the reliability of radiocarbon measurements using the stepwise acid hydrolysis technique is discussed and confronted with presumed historical constraints.","PeriodicalId":21020,"journal":{"name":"Radiocarbon","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HISTORIC LIME MORTARS COMPOSITION AND TERMINOLOGY FOR RADIOCARBON DATING—CASE STUDIES BASED ON THIN-SECTION PETROGRAPHY AND CATHODOLUMINESCENCE\",\"authors\":\"Marine Wojcieszak, Laurent Fontaine, Jan Elsen, Roald Hayen, Alexander Lehouck, Mathieu Boudin\",\"doi\":\"10.1017/rdc.2024.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the first developments of anthropogenic lime materials radiocarbon (<jats:sup>14</jats:sup>C) dating in the 1960s, numerous studies have been undertaken and developed to investigate the topic further. Historic mortars are complex composite and open system materials that can incorporate a large range of components. Due to the complexity of the historic lime mortars composition, they are not part of a routine protocol in most radiocarbon laboratories and reliable dating is not always achieved. A thorough characterization needs to be performed and different preparation methods can be considered as a function of their compositions. A vast range of terms are employed to qualify the lime mortars components and alterations that can possibly have an influence on the dating result. Here, a detailed description of these components and the various terms used is listed. To illustrate this, images obtained by thin-section petrography and cathodoluminescence are presented in addition to radiocarbon results using stepwise acid hydrolysis on Belgian mortars having different provenance, state, age and composition. Depending on the type of aggregate used, the type of binder and its conservation state, the eventual presence of weathering carbonates and the assumed speed of the carbonation process, the reliability of radiocarbon measurements using the stepwise acid hydrolysis technique is discussed and confronted with presumed historical constraints.\",\"PeriodicalId\":21020,\"journal\":{\"name\":\"Radiocarbon\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiocarbon\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/rdc.2024.14\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiocarbon","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/rdc.2024.14","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
HISTORIC LIME MORTARS COMPOSITION AND TERMINOLOGY FOR RADIOCARBON DATING—CASE STUDIES BASED ON THIN-SECTION PETROGRAPHY AND CATHODOLUMINESCENCE
Since the first developments of anthropogenic lime materials radiocarbon (14C) dating in the 1960s, numerous studies have been undertaken and developed to investigate the topic further. Historic mortars are complex composite and open system materials that can incorporate a large range of components. Due to the complexity of the historic lime mortars composition, they are not part of a routine protocol in most radiocarbon laboratories and reliable dating is not always achieved. A thorough characterization needs to be performed and different preparation methods can be considered as a function of their compositions. A vast range of terms are employed to qualify the lime mortars components and alterations that can possibly have an influence on the dating result. Here, a detailed description of these components and the various terms used is listed. To illustrate this, images obtained by thin-section petrography and cathodoluminescence are presented in addition to radiocarbon results using stepwise acid hydrolysis on Belgian mortars having different provenance, state, age and composition. Depending on the type of aggregate used, the type of binder and its conservation state, the eventual presence of weathering carbonates and the assumed speed of the carbonation process, the reliability of radiocarbon measurements using the stepwise acid hydrolysis technique is discussed and confronted with presumed historical constraints.
期刊介绍:
Radiocarbon serves as the leading international journal for technical and interpretive articles, date lists, and advancements in 14C and other radioisotopes relevant to archaeological, geophysical, oceanographic, and related dating methods. Established in 1959, it has published numerous seminal works and hosts the triennial International Radiocarbon Conference proceedings. The journal also features occasional special issues. Submissions encompass regular articles such as research reports, technical descriptions, and date lists, along with comments, letters to the editor, book reviews, and laboratory lists.