FullPack:通用 CPU 上子字节量化矢量矩阵乘法的全矢量利用率

IF 1.4 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Computer Architecture Letters Pub Date : 2024-02-27 DOI:10.1109/LCA.2024.3370402
Hossein Katebi;Navidreza Asadi;Maziar Goudarzi
{"title":"FullPack:通用 CPU 上子字节量化矢量矩阵乘法的全矢量利用率","authors":"Hossein Katebi;Navidreza Asadi;Maziar Goudarzi","doi":"10.1109/LCA.2024.3370402","DOIUrl":null,"url":null,"abstract":"Sub-byte quantization on popular vector ISAs suffers from heavy waste of vector as well as memory bandwidth. The latest methods pack a number of quantized data in one vector, but have to pad them with empty bits to avoid overflow to neighbours. We remove even these empty bits and provide full utilization of the vector and memory bandwidth by our data-layout/compute co-design scheme. We implemented FullPack on TFLite for Vector-Matrix multiplication and showed up to \n<inline-formula><tex-math>$6.7\\times$</tex-math></inline-formula>\n speedup, \n<inline-formula><tex-math>$2.75\\times$</tex-math></inline-formula>\n on average on single layers, which translated to \n<inline-formula><tex-math>$1.56-2.11\\times$</tex-math></inline-formula>\n end-to-end speedup on DeepSpeech.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"23 2","pages":"142-145"},"PeriodicalIF":1.4000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FullPack: Full Vector Utilization for Sub-Byte Quantized Matrix-Vector Multiplication on General Purpose CPUs\",\"authors\":\"Hossein Katebi;Navidreza Asadi;Maziar Goudarzi\",\"doi\":\"10.1109/LCA.2024.3370402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sub-byte quantization on popular vector ISAs suffers from heavy waste of vector as well as memory bandwidth. The latest methods pack a number of quantized data in one vector, but have to pad them with empty bits to avoid overflow to neighbours. We remove even these empty bits and provide full utilization of the vector and memory bandwidth by our data-layout/compute co-design scheme. We implemented FullPack on TFLite for Vector-Matrix multiplication and showed up to \\n<inline-formula><tex-math>$6.7\\\\times$</tex-math></inline-formula>\\n speedup, \\n<inline-formula><tex-math>$2.75\\\\times$</tex-math></inline-formula>\\n on average on single layers, which translated to \\n<inline-formula><tex-math>$1.56-2.11\\\\times$</tex-math></inline-formula>\\n end-to-end speedup on DeepSpeech.\",\"PeriodicalId\":51248,\"journal\":{\"name\":\"IEEE Computer Architecture Letters\",\"volume\":\"23 2\",\"pages\":\"142-145\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Computer Architecture Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10449368/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10449368/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

流行的矢量 ISA 上的子字节量化严重浪费了矢量和内存带宽。最新的方法将大量量化数据打包到一个矢量中,但必须填充空位以避免溢出到邻域。我们通过数据布局/计算协同设计方案,去掉了这些空位,从而充分利用了矢量和内存带宽。我们在 TFLite 上实现了 FullPack 的矢量-矩阵乘法,结果显示速度提高了 6.7 倍,单层平均提高了 2.75 倍,在 DeepSpeech 上的端到端速度提高了 1.56-2.11 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FullPack: Full Vector Utilization for Sub-Byte Quantized Matrix-Vector Multiplication on General Purpose CPUs
Sub-byte quantization on popular vector ISAs suffers from heavy waste of vector as well as memory bandwidth. The latest methods pack a number of quantized data in one vector, but have to pad them with empty bits to avoid overflow to neighbours. We remove even these empty bits and provide full utilization of the vector and memory bandwidth by our data-layout/compute co-design scheme. We implemented FullPack on TFLite for Vector-Matrix multiplication and showed up to $6.7\times$ speedup, $2.75\times$ on average on single layers, which translated to $1.56-2.11\times$ end-to-end speedup on DeepSpeech.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Computer Architecture Letters
IEEE Computer Architecture Letters COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.60
自引率
4.30%
发文量
29
期刊介绍: IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.
期刊最新文献
A Flexible Hybrid Interconnection Design for High-Performance and Energy-Efficient Chiplet-Based Systems Efficient Implementation of Knuth Yao Sampler on Reconfigurable Hardware SmartQuant: CXL-Based AI Model Store in Support of Runtime Configurable Weight Quantization Proactive Embedding on Cold Data for Deep Learning Recommendation Model Training Octopus: A Cycle-Accurate Cache System Simulator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1