{"title":"从离子型稀土精矿的酸浸渣中回收稀土元素和钍","authors":"Qiaofa Lan, Xiaolin Zhang, Fei Niu, Donghui Liu, Leiting Shen, Youming Yang","doi":"10.1016/j.jre.2024.02.010","DOIUrl":null,"url":null,"abstract":"The acid leaching residue (ALR) of ionic rare earth (IRE) concentrates containing radioactive elements such as thorium (Th) is classified as low-level radioactive waste. ALR holds valuable strategic resources such as rare earth and Th, while improper long-term heaping storage of ALR poses a substantial environmental risk. This paper proposes a comprehensive process involving low-temperature roasting, hydrochloric acid leaching, single extractant enrichment, and stepwise stripping to recover rare earth elements and thorium from ALR. The achieved leaching efficiencies are 80.11% of LnY, 99.43% of Sc(III), and 98.67% of Th(IV) after the carbonization of the organic phase in the ALR through low-temperature roasting. Despite large amounts of acid and impurities present in the leachate, 2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester (HEHEHP) still exhibits nearly 100% extraction efficiency for Sc(III) and Th(IV). The effective separation of LnY, Th(IV), and Sc(III) was achieved by implementing fractional extraction enrichment of Th(IV) and Sc(III), followed by Th(IV) removal through HSO and Sc(III) removal via NaOH from the loaded organic phase. This scheme successfully achieves a recovery of RE and Th and offers a viable solution for the safe disposal of ALR.","PeriodicalId":16940,"journal":{"name":"Journal of Rare Earths","volume":"79 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recovery of rare earth elements and thorium from acid leaching residue of ionic rare earth concentrates\",\"authors\":\"Qiaofa Lan, Xiaolin Zhang, Fei Niu, Donghui Liu, Leiting Shen, Youming Yang\",\"doi\":\"10.1016/j.jre.2024.02.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The acid leaching residue (ALR) of ionic rare earth (IRE) concentrates containing radioactive elements such as thorium (Th) is classified as low-level radioactive waste. ALR holds valuable strategic resources such as rare earth and Th, while improper long-term heaping storage of ALR poses a substantial environmental risk. This paper proposes a comprehensive process involving low-temperature roasting, hydrochloric acid leaching, single extractant enrichment, and stepwise stripping to recover rare earth elements and thorium from ALR. The achieved leaching efficiencies are 80.11% of LnY, 99.43% of Sc(III), and 98.67% of Th(IV) after the carbonization of the organic phase in the ALR through low-temperature roasting. Despite large amounts of acid and impurities present in the leachate, 2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester (HEHEHP) still exhibits nearly 100% extraction efficiency for Sc(III) and Th(IV). The effective separation of LnY, Th(IV), and Sc(III) was achieved by implementing fractional extraction enrichment of Th(IV) and Sc(III), followed by Th(IV) removal through HSO and Sc(III) removal via NaOH from the loaded organic phase. This scheme successfully achieves a recovery of RE and Th and offers a viable solution for the safe disposal of ALR.\",\"PeriodicalId\":16940,\"journal\":{\"name\":\"Journal of Rare Earths\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rare Earths\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jre.2024.02.010\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rare Earths","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jre.2024.02.010","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Recovery of rare earth elements and thorium from acid leaching residue of ionic rare earth concentrates
The acid leaching residue (ALR) of ionic rare earth (IRE) concentrates containing radioactive elements such as thorium (Th) is classified as low-level radioactive waste. ALR holds valuable strategic resources such as rare earth and Th, while improper long-term heaping storage of ALR poses a substantial environmental risk. This paper proposes a comprehensive process involving low-temperature roasting, hydrochloric acid leaching, single extractant enrichment, and stepwise stripping to recover rare earth elements and thorium from ALR. The achieved leaching efficiencies are 80.11% of LnY, 99.43% of Sc(III), and 98.67% of Th(IV) after the carbonization of the organic phase in the ALR through low-temperature roasting. Despite large amounts of acid and impurities present in the leachate, 2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester (HEHEHP) still exhibits nearly 100% extraction efficiency for Sc(III) and Th(IV). The effective separation of LnY, Th(IV), and Sc(III) was achieved by implementing fractional extraction enrichment of Th(IV) and Sc(III), followed by Th(IV) removal through HSO and Sc(III) removal via NaOH from the loaded organic phase. This scheme successfully achieves a recovery of RE and Th and offers a viable solution for the safe disposal of ALR.
期刊介绍:
The Journal of Rare Earths reports studies on the 17 rare earth elements. It is a unique English-language learned journal that publishes works on various aspects of basic theory and applied science in the field of rare earths (RE). The journal accepts original high-quality original research papers and review articles with inventive content, and complete experimental data. It represents high academic standards and new progress in the RE field. Due to the advantage of abundant RE resources of China, the research on RE develops very actively, and papers on the latest progress in this field emerge every year. It is not only an important resource in which technicians publish and obtain their latest research results on RE, but also an important way of reflecting the updated progress in RE research field.
The Journal of Rare Earths covers all research and application of RE rare earths including spectroscopy, luminescence and phosphors, rare earth catalysis, magnetism and magnetic materials, advanced rare earth materials, RE chemistry & hydrometallurgy, RE metallography & pyrometallurgy, RE new materials, RE solid state physics & solid state chemistry, rare earth applications, RE analysis & test, RE geology & ore dressing, etc.