{"title":"机器翻译中动词识别的人工智能高级算法探讨","authors":"Qinghua Ai, Qingyan Ai, Jun Wang","doi":"10.1145/3649891","DOIUrl":null,"url":null,"abstract":"<p>This article aimed to address the problems of word order confusion, context dependency, and ambiguity in traditional machine translation (MT) methods for verb recognition. By applying advanced intelligent algorithms of artificial intelligence, verb recognition can be better processed and the quality and accuracy of MT can be improved. Based on Neural machine translation (NMT), basic attention mechanisms, historical attention information, dynamically obtain information related to the generated words, and constraint mechanisms were introduced to embed semantic information, represent polysemy, and annotate semantic roles of verbs. This article used the Workshop on machine translation (WMT), British National Corpus (BNC), Gutenberg, Reuters Corpus, OpenSubtitles corpus, and enhanced the data in the corpus. The improved NMT model was compared with traditional NMT models, Rule Based machine translation (RBMT), and Statistical machine translation (SMT). The experimental results showed that the average verb semantic matching degree of the improved NMT model in 5 corpora was 0.85, and the average Bilingual Evaluation Understudy (BLEU) score in 5 corpora was 0.90. The improved NMT model in this article can effectively improve the accuracy of verb recognition in MT, providing new methods for verb recognition in MT.</p>","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploration on Advanced Intelligent Algorithms of Artificial Intelligence for Verb Recognition in Machine Translation\",\"authors\":\"Qinghua Ai, Qingyan Ai, Jun Wang\",\"doi\":\"10.1145/3649891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article aimed to address the problems of word order confusion, context dependency, and ambiguity in traditional machine translation (MT) methods for verb recognition. By applying advanced intelligent algorithms of artificial intelligence, verb recognition can be better processed and the quality and accuracy of MT can be improved. Based on Neural machine translation (NMT), basic attention mechanisms, historical attention information, dynamically obtain information related to the generated words, and constraint mechanisms were introduced to embed semantic information, represent polysemy, and annotate semantic roles of verbs. This article used the Workshop on machine translation (WMT), British National Corpus (BNC), Gutenberg, Reuters Corpus, OpenSubtitles corpus, and enhanced the data in the corpus. The improved NMT model was compared with traditional NMT models, Rule Based machine translation (RBMT), and Statistical machine translation (SMT). The experimental results showed that the average verb semantic matching degree of the improved NMT model in 5 corpora was 0.85, and the average Bilingual Evaluation Understudy (BLEU) score in 5 corpora was 0.90. The improved NMT model in this article can effectively improve the accuracy of verb recognition in MT, providing new methods for verb recognition in MT.</p>\",\"PeriodicalId\":54312,\"journal\":{\"name\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3649891\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3649891","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Exploration on Advanced Intelligent Algorithms of Artificial Intelligence for Verb Recognition in Machine Translation
This article aimed to address the problems of word order confusion, context dependency, and ambiguity in traditional machine translation (MT) methods for verb recognition. By applying advanced intelligent algorithms of artificial intelligence, verb recognition can be better processed and the quality and accuracy of MT can be improved. Based on Neural machine translation (NMT), basic attention mechanisms, historical attention information, dynamically obtain information related to the generated words, and constraint mechanisms were introduced to embed semantic information, represent polysemy, and annotate semantic roles of verbs. This article used the Workshop on machine translation (WMT), British National Corpus (BNC), Gutenberg, Reuters Corpus, OpenSubtitles corpus, and enhanced the data in the corpus. The improved NMT model was compared with traditional NMT models, Rule Based machine translation (RBMT), and Statistical machine translation (SMT). The experimental results showed that the average verb semantic matching degree of the improved NMT model in 5 corpora was 0.85, and the average Bilingual Evaluation Understudy (BLEU) score in 5 corpora was 0.90. The improved NMT model in this article can effectively improve the accuracy of verb recognition in MT, providing new methods for verb recognition in MT.
期刊介绍:
The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to:
-Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc.
-Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc.
-Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition.
-Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc.
-Machine Translation involving Asian or low-resource languages.
-Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc.
-Information Extraction and Filtering: including automatic abstraction, user profiling, etc.
-Speech processing: including text-to-speech synthesis and automatic speech recognition.
-Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc.
-Cross-lingual information processing involving Asian or low-resource languages.
-Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.