基于 CEEMD 和小波软阈值的轨道表面缺陷信号去噪方法研究

IF 0.9 4区 物理与天体物理 Q4 ACOUSTICS Acoustical Physics Pub Date : 2024-02-28 DOI:10.1134/S1063771022600504
Guo Hua-Ling, Zhenh Bin, Liu Li-Ping, Liu Hui
{"title":"基于 CEEMD 和小波软阈值的轨道表面缺陷信号去噪方法研究","authors":"Guo Hua-Ling,&nbsp;Zhenh Bin,&nbsp;Liu Li-Ping,&nbsp;Liu Hui","doi":"10.1134/S1063771022600504","DOIUrl":null,"url":null,"abstract":"<p>Laser ultrasonic detection of rail defects has become a new method of rail nondestructive testing. Obtaining accurate rail defect signal is a prerequisite to judge the size of defects and avoid train accidents and ensure driving safety. In order to effectively improve the SNR of defect echo, a denoising algorithm combining CEEMD and wavelet soft threshold was proposed. First, CEEMD decomposition was performed on the signal to determine the demarcation point <i>k</i> of IMF components by autocorrelation function. The signal after <i>k</i> + 1 component was reconstructed. Then, the reconstructed signals were decomposed by wavelet transform. The high frequency coefficients after soft threshold processing and the low frequency coefficients of wavelet transform were reconstructed to complete the denoising of rail surface defect signals. The rail with defect of a depth of 0.5 mm and a width of 0.5 mm was tested and verified by laser ultrasonic experiment. By experiment the denoising method combining CEEMD and wavelet soft threshold suppressed effectively the noise. It retained the detailed characteristics of the defective reflected waves. It achieved the good denoising characteristics. It improves the signal-to-noise ratio by 7.12 and 0.77 dB, respectively, over the EMD denoising algorithm and CEEMD denoising algorithm at 1 dB noise intensity and improves the signal-to-noise ratio by 3.37 and 1.23 dB, respectively, over the EMD denoising algorithm and CEEMD denoising algorithm at 20 dB noise intensity.</p>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Denoising Method of Surface Defect Signal of Rail Based on CEEMD and Wavelet Soft Threshold\",\"authors\":\"Guo Hua-Ling,&nbsp;Zhenh Bin,&nbsp;Liu Li-Ping,&nbsp;Liu Hui\",\"doi\":\"10.1134/S1063771022600504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Laser ultrasonic detection of rail defects has become a new method of rail nondestructive testing. Obtaining accurate rail defect signal is a prerequisite to judge the size of defects and avoid train accidents and ensure driving safety. In order to effectively improve the SNR of defect echo, a denoising algorithm combining CEEMD and wavelet soft threshold was proposed. First, CEEMD decomposition was performed on the signal to determine the demarcation point <i>k</i> of IMF components by autocorrelation function. The signal after <i>k</i> + 1 component was reconstructed. Then, the reconstructed signals were decomposed by wavelet transform. The high frequency coefficients after soft threshold processing and the low frequency coefficients of wavelet transform were reconstructed to complete the denoising of rail surface defect signals. The rail with defect of a depth of 0.5 mm and a width of 0.5 mm was tested and verified by laser ultrasonic experiment. By experiment the denoising method combining CEEMD and wavelet soft threshold suppressed effectively the noise. It retained the detailed characteristics of the defective reflected waves. It achieved the good denoising characteristics. It improves the signal-to-noise ratio by 7.12 and 0.77 dB, respectively, over the EMD denoising algorithm and CEEMD denoising algorithm at 1 dB noise intensity and improves the signal-to-noise ratio by 3.37 and 1.23 dB, respectively, over the EMD denoising algorithm and CEEMD denoising algorithm at 20 dB noise intensity.</p>\",\"PeriodicalId\":455,\"journal\":{\"name\":\"Acoustical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063771022600504\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063771022600504","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 激光超声波检测钢轨缺陷已成为钢轨无损检测的一种新方法。获取准确的钢轨缺陷信号是判断缺陷大小、避免列车事故、确保行车安全的前提。为了有效提高缺陷回波的信噪比,提出了一种结合 CEEMD 和小波软阈值的去噪算法。首先,对信号进行 CEEMD 分解,通过自相关函数确定 IMF 分量的分界点 k。对 k + 1 分量后的信号进行重构。然后,用小波变换对重建后的信号进行分解。对软阈值处理后的高频系数和小波变换的低频系数进行重构,完成对钢轨表面缺陷信号的去噪处理。通过激光超声波实验对深度为 0.5 毫米、宽度为 0.5 毫米的钢轨缺陷进行了测试和验证。通过实验,结合 CEEMD 和小波软阈值的去噪方法有效地抑制了噪声。它保留了缺陷反射波的细节特征。实现了良好的去噪特性。在 1 dB 噪声强度下,它比 EMD 去噪算法和 CEEMD 去噪算法的信噪比分别提高了 7.12 和 0.77 dB;在 20 dB 噪声强度下,它比 EMD 去噪算法和 CEEMD 去噪算法的信噪比分别提高了 3.37 和 1.23 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on Denoising Method of Surface Defect Signal of Rail Based on CEEMD and Wavelet Soft Threshold

Laser ultrasonic detection of rail defects has become a new method of rail nondestructive testing. Obtaining accurate rail defect signal is a prerequisite to judge the size of defects and avoid train accidents and ensure driving safety. In order to effectively improve the SNR of defect echo, a denoising algorithm combining CEEMD and wavelet soft threshold was proposed. First, CEEMD decomposition was performed on the signal to determine the demarcation point k of IMF components by autocorrelation function. The signal after k + 1 component was reconstructed. Then, the reconstructed signals were decomposed by wavelet transform. The high frequency coefficients after soft threshold processing and the low frequency coefficients of wavelet transform were reconstructed to complete the denoising of rail surface defect signals. The rail with defect of a depth of 0.5 mm and a width of 0.5 mm was tested and verified by laser ultrasonic experiment. By experiment the denoising method combining CEEMD and wavelet soft threshold suppressed effectively the noise. It retained the detailed characteristics of the defective reflected waves. It achieved the good denoising characteristics. It improves the signal-to-noise ratio by 7.12 and 0.77 dB, respectively, over the EMD denoising algorithm and CEEMD denoising algorithm at 1 dB noise intensity and improves the signal-to-noise ratio by 3.37 and 1.23 dB, respectively, over the EMD denoising algorithm and CEEMD denoising algorithm at 20 dB noise intensity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acoustical Physics
Acoustical Physics 物理-声学
CiteScore
1.60
自引率
50.00%
发文量
58
审稿时长
3.5 months
期刊介绍: Acoustical Physics is an international peer reviewed journal published with the participation of the Russian Academy of Sciences. It covers theoretical and experimental aspects of basic and applied acoustics: classical problems of linear acoustics and wave theory; nonlinear acoustics; physical acoustics; ocean acoustics and hydroacoustics; atmospheric and aeroacoustics; acoustics of structurally inhomogeneous solids; geological acoustics; acoustical ecology, noise and vibration; chamber acoustics, musical acoustics; acoustic signals processing, computer simulations; acoustics of living systems, biomedical acoustics; physical principles of engineering acoustics. The journal publishes critical reviews, original articles, short communications, and letters to the editor. It covers theoretical and experimental aspects of basic and applied acoustics. The journal welcomes manuscripts from all countries in the English or Russian language.
期刊最新文献
Peculiarities of Flexural Wave Propagation in a Notched Bar Interference of Echo Signals from Spherical Scatterers Located Near the Bottom Theoretical and Experimental Study of Diffraction by a Thin Cone Thermal Ablation of Biological Tissue by Sonicating Discrete Foci in a Specified Volume with a Single Wave Burst with Shocks On the Evolution of a System of Shock Waves Created by Engine Fan Blades
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1