邀请向MSDEC提交用于体内近红外光热疗法的癌症靶向金饰黑色素纳米粒子

IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Molecular Systems Design & Engineering Pub Date : 2024-02-29 DOI:10.1039/D3ME00173C
Ghasidit Pornnoppadol, Soojeong Cho, Jeong Heon Yu, Shin-Hyun Kim and Yoon Sung Nam
{"title":"邀请向MSDEC提交用于体内近红外光热疗法的癌症靶向金饰黑色素纳米粒子","authors":"Ghasidit Pornnoppadol, Soojeong Cho, Jeong Heon Yu, Shin-Hyun Kim and Yoon Sung Nam","doi":"10.1039/D3ME00173C","DOIUrl":null,"url":null,"abstract":"<p >Photothermal cancer therapy has gained increasing attention as a minimally invasive treatment <em>via</em> the localized heating of photothermal agents to eradicate cancer cells. However, its clinical translation has been limited by insufficient photothermal conversion in the near-infrared (NIR) range and low tumor-targeting efficiency. Here, synthetic melanin-like nanoparticles (∼190 nm in diameter) decorated with a cluster of smaller gold nanoparticles (∼20 nm in diameter) are developed as efficient NIR photothermal agents for <em>in vivo</em> cancer treatment. The melanin-gold hybrid nanoparticles are prepared by the oxidative polymerization of dopamine into colloidal melanin-like nanoparticles, followed by the spontaneous reduction of gold ion precursors into plasmonic nanoparticles on the surface of melanin nanoparticles. The gold nanoparticles significantly increase the NIR light absorption and photothermal conversion of the melanin nanoparticles, making their overall photothermal performance superior to conventional gold nanorods. Chemical conjugation of epidermal growth factor to the hybrid nanoparticles facilitates their cellular internalization into lung adenocarcinoma cells and enables <em>in vivo</em> tumor-targeting in a xenograft mouse model. The nanoparticles also exhibit excellent dispersion stability in serum and maintain high photothermal efficiency even after extensive laser irradiation. Our results suggest that the electronic hybridization of melanin and gold nanostructures provides a new opportunity to fine-tune their optical and chemical properties for tumor-targeted photothermal therapy.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 5","pages":" 507-517"},"PeriodicalIF":3.2000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/me/d3me00173c?page=search","citationCount":"0","resultStr":"{\"title\":\"Cancer-targeting gold-decorated melanin nanoparticles for in vivo near-infrared photothermal therapy†\",\"authors\":\"Ghasidit Pornnoppadol, Soojeong Cho, Jeong Heon Yu, Shin-Hyun Kim and Yoon Sung Nam\",\"doi\":\"10.1039/D3ME00173C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Photothermal cancer therapy has gained increasing attention as a minimally invasive treatment <em>via</em> the localized heating of photothermal agents to eradicate cancer cells. However, its clinical translation has been limited by insufficient photothermal conversion in the near-infrared (NIR) range and low tumor-targeting efficiency. Here, synthetic melanin-like nanoparticles (∼190 nm in diameter) decorated with a cluster of smaller gold nanoparticles (∼20 nm in diameter) are developed as efficient NIR photothermal agents for <em>in vivo</em> cancer treatment. The melanin-gold hybrid nanoparticles are prepared by the oxidative polymerization of dopamine into colloidal melanin-like nanoparticles, followed by the spontaneous reduction of gold ion precursors into plasmonic nanoparticles on the surface of melanin nanoparticles. The gold nanoparticles significantly increase the NIR light absorption and photothermal conversion of the melanin nanoparticles, making their overall photothermal performance superior to conventional gold nanorods. Chemical conjugation of epidermal growth factor to the hybrid nanoparticles facilitates their cellular internalization into lung adenocarcinoma cells and enables <em>in vivo</em> tumor-targeting in a xenograft mouse model. The nanoparticles also exhibit excellent dispersion stability in serum and maintain high photothermal efficiency even after extensive laser irradiation. Our results suggest that the electronic hybridization of melanin and gold nanostructures provides a new opportunity to fine-tune their optical and chemical properties for tumor-targeted photothermal therapy.</p>\",\"PeriodicalId\":91,\"journal\":{\"name\":\"Molecular Systems Design & Engineering\",\"volume\":\" 5\",\"pages\":\" 507-517\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/me/d3me00173c?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Design & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/me/d3me00173c\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/me/d3me00173c","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

光热疗法作为一种通过局部加热光热制剂来消灭癌细胞的微创治疗方法,已受到越来越多的关注。然而,由于近红外(NIR)范围内的光热转换不足以及肿瘤靶向效率低,光热疗法的临床应用一直受到限制。在这里,合成的黑色素类纳米粒子(直径约 190 nm)装饰着一簇较小的金纳米粒子(直径约 20 nm),被开发为用于体内癌症治疗的高效近红外光热剂。黑色素-金混合纳米粒子是通过多巴胺氧化聚合成胶体状黑色素纳米粒子,然后金离子前体在黑色素纳米粒子表面自发还原成等离子纳米粒子制备而成的。金纳米粒子大大提高了黑色素纳米粒子对近红外光的吸收和光热转换,使其整体光热性能优于传统的金纳米棒。表皮生长因子与混合纳米粒子的化学结合促进了它们在肺腺癌细胞中的细胞内化,并在异种移植小鼠模型中实现了体内肿瘤靶向。这种纳米粒子在血清中也表现出极佳的分散稳定性,即使在大量激光照射后也能保持较高的光热效率。我们的研究结果表明,黑色素与金纳米结构的电子杂化为微调其光学和化学特性以实现肿瘤靶向光热疗法提供了新的机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cancer-targeting gold-decorated melanin nanoparticles for in vivo near-infrared photothermal therapy†

Photothermal cancer therapy has gained increasing attention as a minimally invasive treatment via the localized heating of photothermal agents to eradicate cancer cells. However, its clinical translation has been limited by insufficient photothermal conversion in the near-infrared (NIR) range and low tumor-targeting efficiency. Here, synthetic melanin-like nanoparticles (∼190 nm in diameter) decorated with a cluster of smaller gold nanoparticles (∼20 nm in diameter) are developed as efficient NIR photothermal agents for in vivo cancer treatment. The melanin-gold hybrid nanoparticles are prepared by the oxidative polymerization of dopamine into colloidal melanin-like nanoparticles, followed by the spontaneous reduction of gold ion precursors into plasmonic nanoparticles on the surface of melanin nanoparticles. The gold nanoparticles significantly increase the NIR light absorption and photothermal conversion of the melanin nanoparticles, making their overall photothermal performance superior to conventional gold nanorods. Chemical conjugation of epidermal growth factor to the hybrid nanoparticles facilitates their cellular internalization into lung adenocarcinoma cells and enables in vivo tumor-targeting in a xenograft mouse model. The nanoparticles also exhibit excellent dispersion stability in serum and maintain high photothermal efficiency even after extensive laser irradiation. Our results suggest that the electronic hybridization of melanin and gold nanostructures provides a new opportunity to fine-tune their optical and chemical properties for tumor-targeted photothermal therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Systems Design & Engineering
Molecular Systems Design & Engineering Engineering-Biomedical Engineering
CiteScore
6.40
自引率
2.80%
发文量
144
期刊介绍: Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.
期刊最新文献
Back cover Back cover Dual responsive fluorescence switching of organohydrogel towards base/acid† Back cover Graph-based networks for accurate prediction of ground and excited state molecular properties from minimal features†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1