矿山岩体渗流突变的前兆信息与灾害机理研究

IF 5.8 4区 工程技术 Q1 MECHANICS Applied Rheology Pub Date : 2024-02-28 DOI:10.1515/arh-2023-0116
Yijun Gao, Zongjie Zhu, Zhiming Liu, Gang Huang
{"title":"矿山岩体渗流突变的前兆信息与灾害机理研究","authors":"Yijun Gao, Zongjie Zhu, Zhiming Liu, Gang Huang","doi":"10.1515/arh-2023-0116","DOIUrl":null,"url":null,"abstract":"Changes in the stress field and seepage field of mining unloading are one of the important causes of deformation and destabilization of the rock body of the bottom slab. With the increase of mining intensity and depth, the disaster of water influx on the bottom plate under the dual action of mining unloading and pressurized water has become one of the main problems restricting the efficient and safe mining of coal. Based on the research background of confined water inrush from Ordovician limestone floor in North China Coalfield, the numerical analysis revealed that mining unloading concentrates stresses, increases deformation, and increases the plastic zone and permeability range. Based on laboratory acoustic emission and mechanical tests, it is found that the peak of acoustic emission ringing number can be one of the precursor information of limestone seepage mutation. This study reveals the evolution law of rock body deformation and permeability under the unloading path, and the research obtains the unloading seepage and water gushing disaster mechanism of the subgrade rock body.","PeriodicalId":50738,"journal":{"name":"Applied Rheology","volume":"170 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on precursor information and disaster mechanism of sudden change of seepage in mining rock mass\",\"authors\":\"Yijun Gao, Zongjie Zhu, Zhiming Liu, Gang Huang\",\"doi\":\"10.1515/arh-2023-0116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Changes in the stress field and seepage field of mining unloading are one of the important causes of deformation and destabilization of the rock body of the bottom slab. With the increase of mining intensity and depth, the disaster of water influx on the bottom plate under the dual action of mining unloading and pressurized water has become one of the main problems restricting the efficient and safe mining of coal. Based on the research background of confined water inrush from Ordovician limestone floor in North China Coalfield, the numerical analysis revealed that mining unloading concentrates stresses, increases deformation, and increases the plastic zone and permeability range. Based on laboratory acoustic emission and mechanical tests, it is found that the peak of acoustic emission ringing number can be one of the precursor information of limestone seepage mutation. This study reveals the evolution law of rock body deformation and permeability under the unloading path, and the research obtains the unloading seepage and water gushing disaster mechanism of the subgrade rock body.\",\"PeriodicalId\":50738,\"journal\":{\"name\":\"Applied Rheology\",\"volume\":\"170 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Rheology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/arh-2023-0116\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Rheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/arh-2023-0116","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

采空区应力场和渗流场的变化是造成底板岩体变形和失稳的重要原因之一。随着开采强度和深度的增加,在开采卸荷和承压水的双重作用下,底板涌水灾害已成为制约煤炭高效安全开采的主要问题之一。基于华北煤田奥陶系石灰岩底板承压水涌水的研究背景,数值分析表明,开采卸载使应力集中,变形增大,增大了塑性区和透水范围。基于实验室声发射和力学测试,发现声发射振铃数峰值可作为石灰岩渗流突变的前兆信息之一。该研究揭示了卸荷路径下岩体变形和渗透率的演化规律,研究获得了路基岩体卸荷渗流和涌水灾害机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on precursor information and disaster mechanism of sudden change of seepage in mining rock mass
Changes in the stress field and seepage field of mining unloading are one of the important causes of deformation and destabilization of the rock body of the bottom slab. With the increase of mining intensity and depth, the disaster of water influx on the bottom plate under the dual action of mining unloading and pressurized water has become one of the main problems restricting the efficient and safe mining of coal. Based on the research background of confined water inrush from Ordovician limestone floor in North China Coalfield, the numerical analysis revealed that mining unloading concentrates stresses, increases deformation, and increases the plastic zone and permeability range. Based on laboratory acoustic emission and mechanical tests, it is found that the peak of acoustic emission ringing number can be one of the precursor information of limestone seepage mutation. This study reveals the evolution law of rock body deformation and permeability under the unloading path, and the research obtains the unloading seepage and water gushing disaster mechanism of the subgrade rock body.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Rheology
Applied Rheology 物理-力学
CiteScore
3.00
自引率
5.60%
发文量
7
审稿时长
>12 weeks
期刊介绍: Applied Rheology is a peer-reviewed, open access, electronic journal devoted to the publication in the field of applied rheology. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.
期刊最新文献
Prediction of sensory textures of cosmetics using large amplitude oscillatory shear and extensional rheology Viscoplastic fluid flow in pipes: A rheological study using in-situ laser Doppler velocimetry Structural damage characteristics and mechanism of granite residual soil Rheological characteristics and seepage laws of sandstone specimens containing an inclined single fracture under three-dimensional stress Computational analysis of nanoparticles and waste discharge concentration past a rotating sphere with Lorentz forces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1