Inarah Fajriaty , Irda Fidrianny , Neng Fisheri Kurniati , Norsyahida Mohd Fauzi , Sarmila Hanim Mustafa , I. Ketut Adnyana
{"title":"印度尼西亚红树林蟹(Scylla serrata)甲壳素潜在细胞毒性、抗氧化和 HMG CoA 还原酶抑制作用的体外和硅学研究","authors":"Inarah Fajriaty , Irda Fidrianny , Neng Fisheri Kurniati , Norsyahida Mohd Fauzi , Sarmila Hanim Mustafa , I. Ketut Adnyana","doi":"10.1016/j.sjbs.2024.103964","DOIUrl":null,"url":null,"abstract":"<div><p>This study aimed to characterize chitin extracted from Indonesia mangrove crab (<em>Scylla serrata</em>) shells, as well as to assess its <em>in vitro</em> cytotoxic, antioxidant, and HMG CoA reductase inhibitory potentials. <em>In silico</em> molecular docking, molecular dynamic, and ADMET prediction analyses were also carried out. Chitin was extracted from mangrove crab shells using deproteination and demineralization processes, Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) characterization are then performed. The MTT method was further tested in a study of cell viability, while <em>in vitro</em> method was used to assess HMG CoA reductase inhibitory and antioxidant activities. The extracted chitin was found to have a moderate level of cytotoxic and antioxidant activities. <em>In vitro</em> studies showed that it has an IC<sub>50</sub> of 36,65 ± 0,082 μg/mL as an HMG CoA reductase inhibitor, and decreased enzyme activity by 68.733 % at 100 μg/mL as a concentration. Furthermore, in the <em>in silico</em> study, chitin showed a strong affinity to several targets, including HMG CoA reductase, HMG synthase, LDL receptor, PPAR-alfa, and HCAR-2 with binding energies of −5.7; −5.8; −3.6; −5.6; −4.6 kcal/mol, respectively. Based on the ADMET properties, it had non-toxic molecules, which were absorbed and distributed across the blood-brain barrier. The molecular dynamics (MD) simulation also showed that it remained stable in the active sites of HMG CoA reductase receptor for 100 ns. These results indicated that chitin from Indonesian mangrove crab shells can be used to develop more potent HMG CoA reductase inhibitor with antioxidant and cytotoxic activities for effective dyslipidemia therapy.</p></div>","PeriodicalId":21540,"journal":{"name":"Saudi Journal of Biological Sciences","volume":"31 5","pages":"Article 103964"},"PeriodicalIF":4.4000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319562X24000421/pdfft?md5=56ccf2291ad2132459099da9cdef0979&pid=1-s2.0-S1319562X24000421-main.pdf","citationCount":"0","resultStr":"{\"title\":\"In vitro and in silico studies of the potential cytotoxic, antioxidant, and HMG CoA reductase inhibitory effects of chitin from Indonesia mangrove crab (Scylla serrata) shells\",\"authors\":\"Inarah Fajriaty , Irda Fidrianny , Neng Fisheri Kurniati , Norsyahida Mohd Fauzi , Sarmila Hanim Mustafa , I. Ketut Adnyana\",\"doi\":\"10.1016/j.sjbs.2024.103964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study aimed to characterize chitin extracted from Indonesia mangrove crab (<em>Scylla serrata</em>) shells, as well as to assess its <em>in vitro</em> cytotoxic, antioxidant, and HMG CoA reductase inhibitory potentials. <em>In silico</em> molecular docking, molecular dynamic, and ADMET prediction analyses were also carried out. Chitin was extracted from mangrove crab shells using deproteination and demineralization processes, Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) characterization are then performed. The MTT method was further tested in a study of cell viability, while <em>in vitro</em> method was used to assess HMG CoA reductase inhibitory and antioxidant activities. The extracted chitin was found to have a moderate level of cytotoxic and antioxidant activities. <em>In vitro</em> studies showed that it has an IC<sub>50</sub> of 36,65 ± 0,082 μg/mL as an HMG CoA reductase inhibitor, and decreased enzyme activity by 68.733 % at 100 μg/mL as a concentration. Furthermore, in the <em>in silico</em> study, chitin showed a strong affinity to several targets, including HMG CoA reductase, HMG synthase, LDL receptor, PPAR-alfa, and HCAR-2 with binding energies of −5.7; −5.8; −3.6; −5.6; −4.6 kcal/mol, respectively. Based on the ADMET properties, it had non-toxic molecules, which were absorbed and distributed across the blood-brain barrier. The molecular dynamics (MD) simulation also showed that it remained stable in the active sites of HMG CoA reductase receptor for 100 ns. These results indicated that chitin from Indonesian mangrove crab shells can be used to develop more potent HMG CoA reductase inhibitor with antioxidant and cytotoxic activities for effective dyslipidemia therapy.</p></div>\",\"PeriodicalId\":21540,\"journal\":{\"name\":\"Saudi Journal of Biological Sciences\",\"volume\":\"31 5\",\"pages\":\"Article 103964\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1319562X24000421/pdfft?md5=56ccf2291ad2132459099da9cdef0979&pid=1-s2.0-S1319562X24000421-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Saudi Journal of Biological Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319562X24000421\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Saudi Journal of Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319562X24000421","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
摘要
本研究旨在表征从印度尼西亚红树蟹()壳中提取的甲壳素,并评估其细胞毒性、抗氧化性和 HMG CoA 还原酶抑制潜力。研究还进行了分子对接、分子动力学和 ADMET 预测分析。使用脱蛋白和脱矿物质工艺从红树林蟹壳中提取甲壳素,然后进行扫描电子显微镜(SEM)和傅立叶变换红外(FTIR)表征。在研究细胞存活率时进一步测试了 MTT 法,同时使用该方法评估了 HMG CoA 还原酶抑制和抗氧化活性。研究表明,甲壳素作为 HMG CoA 还原酶抑制剂的 IC 值为 36,65 ± 0,082 μg/mL,浓度为 100 μg/mL 时,酶活性降低了 68.733%。此外,在硅学研究中,甲壳素与多个靶点(包括 HMG CoA 还原酶、HMG 合成酶、低密度脂蛋白受体、PPAR-alpha 和 HCAR-2)表现出很强的亲和力,结合能分别为 -5.7; -5.8; -3.6; -5.6; -4.6 kcal/mol。根据 ADMET 特性,它的分子无毒,可通过血脑屏障吸收和分布。分子动力学(MD)模拟也表明,它在 HMG CoA 还原酶受体的活性位点中保持稳定达 100 ns。这些结果表明,印尼红树林蟹壳中的甲壳素可用于开发更有效的 HMG CoA 还原酶抑制剂,并具有抗氧化和细胞毒性活性,从而有效治疗血脂异常。
In vitro and in silico studies of the potential cytotoxic, antioxidant, and HMG CoA reductase inhibitory effects of chitin from Indonesia mangrove crab (Scylla serrata) shells
This study aimed to characterize chitin extracted from Indonesia mangrove crab (Scylla serrata) shells, as well as to assess its in vitro cytotoxic, antioxidant, and HMG CoA reductase inhibitory potentials. In silico molecular docking, molecular dynamic, and ADMET prediction analyses were also carried out. Chitin was extracted from mangrove crab shells using deproteination and demineralization processes, Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) characterization are then performed. The MTT method was further tested in a study of cell viability, while in vitro method was used to assess HMG CoA reductase inhibitory and antioxidant activities. The extracted chitin was found to have a moderate level of cytotoxic and antioxidant activities. In vitro studies showed that it has an IC50 of 36,65 ± 0,082 μg/mL as an HMG CoA reductase inhibitor, and decreased enzyme activity by 68.733 % at 100 μg/mL as a concentration. Furthermore, in the in silico study, chitin showed a strong affinity to several targets, including HMG CoA reductase, HMG synthase, LDL receptor, PPAR-alfa, and HCAR-2 with binding energies of −5.7; −5.8; −3.6; −5.6; −4.6 kcal/mol, respectively. Based on the ADMET properties, it had non-toxic molecules, which were absorbed and distributed across the blood-brain barrier. The molecular dynamics (MD) simulation also showed that it remained stable in the active sites of HMG CoA reductase receptor for 100 ns. These results indicated that chitin from Indonesian mangrove crab shells can be used to develop more potent HMG CoA reductase inhibitor with antioxidant and cytotoxic activities for effective dyslipidemia therapy.
期刊介绍:
Saudi Journal of Biological Sciences is an English language, peer-reviewed scholarly publication in the area of biological sciences. Saudi Journal of Biological Sciences publishes original papers, reviews and short communications on, but not limited to:
• Biology, Ecology and Ecosystems, Environmental and Biodiversity
• Conservation
• Microbiology
• Physiology
• Genetics and Epidemiology
Saudi Journal of Biological Sciences is the official publication of the Saudi Society for Biological Sciences and is published by King Saud University in collaboration with Elsevier and is edited by an international group of eminent researchers.