{"title":"火星盖尔陨石坑上空大气光学深度(AOD)和热惯性(TI)相互关系的季节性变化","authors":"Farzana Shaheen, Mili Ghosh Nee Lala, A.P. Krishna, Swagata Payra","doi":"10.1016/j.pss.2024.105865","DOIUrl":null,"url":null,"abstract":"<div><p>Investigating the relationship between thermal inertia (TI) and aerosol optical depth (AOD) is significant in giving insights into the seasonality of dust deposition and lifting phenomenon. The present study focuses on establishing a relationship of AOD with TI and different particle sizes over different Martian seasons. Two different Martian landforms (exposed rock and sand dunes) have been used to establish these relationships. TI layer was generated using THEMIS nighttime images for different seasons, whereas Curiosity Rover measured AOD values and Mars Climate database (MCD) visible column dust optical depth were used to derive rover equivalent AOD. An inverse relation was observed between AOD and TI for exposed rock and sand dune regions for all the seasons with low to moderate coefficient of determination (R<sup>2)</sup>. A similar inverse trend was observed between rover equivalent AOD and particle size with R<sup>2</sup> values ranging from 0.8 in the case of sand dunes (winter) to 0.93 in exposed rock (autumn). The results were further compared within the AOD obtained from orbiter image (HRSC) derived using Shadow method for spring season (Shaheen et al., 2022). The same inverse relation was found within TI having good R<sup>2</sup> values of 0.61 for exposed rock and 0.76 for the sand dunes. Error estimation using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Normalized Mean Square Error (NMSE), Fractional Bias (FB), Index of agreement errors was carried out for TI vs. AOD and particle size vs. AOD. Excellent statistical significance was obtained for AOD and particle size, in the case of sand dunes it was 0.96 for autumn and 0.99 in case of exposed rock for spring season, respectively.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"242 ","pages":"Article 105865"},"PeriodicalIF":1.8000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seasonal variation in atmospheric optical depth (AOD) and thermal inertia (TI) inter-relationship over Martian Gale crater\",\"authors\":\"Farzana Shaheen, Mili Ghosh Nee Lala, A.P. Krishna, Swagata Payra\",\"doi\":\"10.1016/j.pss.2024.105865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Investigating the relationship between thermal inertia (TI) and aerosol optical depth (AOD) is significant in giving insights into the seasonality of dust deposition and lifting phenomenon. The present study focuses on establishing a relationship of AOD with TI and different particle sizes over different Martian seasons. Two different Martian landforms (exposed rock and sand dunes) have been used to establish these relationships. TI layer was generated using THEMIS nighttime images for different seasons, whereas Curiosity Rover measured AOD values and Mars Climate database (MCD) visible column dust optical depth were used to derive rover equivalent AOD. An inverse relation was observed between AOD and TI for exposed rock and sand dune regions for all the seasons with low to moderate coefficient of determination (R<sup>2)</sup>. A similar inverse trend was observed between rover equivalent AOD and particle size with R<sup>2</sup> values ranging from 0.8 in the case of sand dunes (winter) to 0.93 in exposed rock (autumn). The results were further compared within the AOD obtained from orbiter image (HRSC) derived using Shadow method for spring season (Shaheen et al., 2022). The same inverse relation was found within TI having good R<sup>2</sup> values of 0.61 for exposed rock and 0.76 for the sand dunes. Error estimation using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Normalized Mean Square Error (NMSE), Fractional Bias (FB), Index of agreement errors was carried out for TI vs. AOD and particle size vs. AOD. Excellent statistical significance was obtained for AOD and particle size, in the case of sand dunes it was 0.96 for autumn and 0.99 in case of exposed rock for spring season, respectively.</p></div>\",\"PeriodicalId\":20054,\"journal\":{\"name\":\"Planetary and Space Science\",\"volume\":\"242 \",\"pages\":\"Article 105865\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Planetary and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032063324000291\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planetary and Space Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032063324000291","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
研究热惯性(TI)与气溶胶光学深度(AOD)之间的关系对于深入了解尘埃沉积和扬升现象的季节性具有重要意义。本研究的重点是建立不同火星季节 AOD 与热惯性和不同粒径气溶胶光学深度之间的关系。两种不同的火星地貌(裸露岩石和沙丘)被用来建立这些关系。利用 THEMIS 不同季节的夜间图像生成了 TI 层,而好奇号漫游车测量的 AOD 值和火星气候数据库(MCD)可见柱尘埃光学深度被用来推导漫游车等效 AOD。在所有季节,裸露岩石和沙丘区域的 AOD 与 TI 之间都呈反比关系,判定系数(R)从低到中度不等。这些结果与利用 Shadow 方法从轨道器图像(HRSC)获得的春季 AOD 进行了进一步比较(Shaheen 等人,2022 年)。在 TI 中发现了相同的反比关系,裸露岩石的 R 值为 0.61,沙丘的 R 值为 0.76。使用平均绝对误差 (MAE)、均方根误差 (RMSE)、归一化均方误差 (NMSE)、分数偏差 (FB)、一致误差指数对 TI vs. AOD 和粒径 vs. AOD 进行了误差估计。结果表明,AOD 和粒径的统计显著性极高,秋季沙丘的显著性为 0.96,春季裸露岩石的显著性为 0.99。
Seasonal variation in atmospheric optical depth (AOD) and thermal inertia (TI) inter-relationship over Martian Gale crater
Investigating the relationship between thermal inertia (TI) and aerosol optical depth (AOD) is significant in giving insights into the seasonality of dust deposition and lifting phenomenon. The present study focuses on establishing a relationship of AOD with TI and different particle sizes over different Martian seasons. Two different Martian landforms (exposed rock and sand dunes) have been used to establish these relationships. TI layer was generated using THEMIS nighttime images for different seasons, whereas Curiosity Rover measured AOD values and Mars Climate database (MCD) visible column dust optical depth were used to derive rover equivalent AOD. An inverse relation was observed between AOD and TI for exposed rock and sand dune regions for all the seasons with low to moderate coefficient of determination (R2). A similar inverse trend was observed between rover equivalent AOD and particle size with R2 values ranging from 0.8 in the case of sand dunes (winter) to 0.93 in exposed rock (autumn). The results were further compared within the AOD obtained from orbiter image (HRSC) derived using Shadow method for spring season (Shaheen et al., 2022). The same inverse relation was found within TI having good R2 values of 0.61 for exposed rock and 0.76 for the sand dunes. Error estimation using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Normalized Mean Square Error (NMSE), Fractional Bias (FB), Index of agreement errors was carried out for TI vs. AOD and particle size vs. AOD. Excellent statistical significance was obtained for AOD and particle size, in the case of sand dunes it was 0.96 for autumn and 0.99 in case of exposed rock for spring season, respectively.
期刊介绍:
Planetary and Space Science publishes original articles as well as short communications (letters). Ground-based and space-borne instrumentation and laboratory simulation of solar system processes are included. The following fields of planetary and solar system research are covered:
• Celestial mechanics, including dynamical evolution of the solar system, gravitational captures and resonances, relativistic effects, tracking and dynamics
• Cosmochemistry and origin, including all aspects of the formation and initial physical and chemical evolution of the solar system
• Terrestrial planets and satellites, including the physics of the interiors, geology and morphology of the surfaces, tectonics, mineralogy and dating
• Outer planets and satellites, including formation and evolution, remote sensing at all wavelengths and in situ measurements
• Planetary atmospheres, including formation and evolution, circulation and meteorology, boundary layers, remote sensing and laboratory simulation
• Planetary magnetospheres and ionospheres, including origin of magnetic fields, magnetospheric plasma and radiation belts, and their interaction with the sun, the solar wind and satellites
• Small bodies, dust and rings, including asteroids, comets and zodiacal light and their interaction with the solar radiation and the solar wind
• Exobiology, including origin of life, detection of planetary ecosystems and pre-biological phenomena in the solar system and laboratory simulations
• Extrasolar systems, including the detection and/or the detectability of exoplanets and planetary systems, their formation and evolution, the physical and chemical properties of the exoplanets
• History of planetary and space research