用于低磁滞 vdW NCFET 逻辑晶体管的 TMD 材料研究

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-02-28 DOI:10.1088/1361-6641/ad2b09
I Blessing Meshach Dason, N Kasthuri, D Nirmal
{"title":"用于低磁滞 vdW NCFET 逻辑晶体管的 TMD 材料研究","authors":"I Blessing Meshach Dason, N Kasthuri, D Nirmal","doi":"10.1088/1361-6641/ad2b09","DOIUrl":null,"url":null,"abstract":"Boltzmann limit is inevitable in conventional MOSFETs, which prevent them to be used for low-power applications. Research in device physics can address this problem by selection of proper materials satisfying our requirements. Recently, 2D transition metal di-chalcogenide (TMD) materials are gaining interest because they help alleviate short-channel effects and DIBL problems. The TMD materials are composed by covalently bonded weak van der Waals (vdW) interaction and can be realized as hetero structures with 2D ferro-electric material CuInP<sub>2</sub>S<sub>6</sub> at the gate stack. This paper demonstrates a vdW negative capacitance field effect transistor (NCFET) structure in TCAD and the design was validated for voltage-current Characteristics. Parametric analysis shows MoS<sub>2</sub> with phenomenal on/off ratio, narrow hysteresis than the counterparts. Simulation shows that MoS<sub>2</sub> vdW NCFET has a high transconductance of 2.36 <italic toggle=\"yes\">µ</italic>S <italic toggle=\"yes\">µ</italic>m<sup>−1</sup>. A steep slope of 28.54 mV dec<sup>−1</sup> is seen in MoS<sub>2</sub> vdW NCFET which promises the performance of logic applications at a reduced supply voltage.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TMD material investigation for a low hysteresis vdW NCFET logic transistor\",\"authors\":\"I Blessing Meshach Dason, N Kasthuri, D Nirmal\",\"doi\":\"10.1088/1361-6641/ad2b09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Boltzmann limit is inevitable in conventional MOSFETs, which prevent them to be used for low-power applications. Research in device physics can address this problem by selection of proper materials satisfying our requirements. Recently, 2D transition metal di-chalcogenide (TMD) materials are gaining interest because they help alleviate short-channel effects and DIBL problems. The TMD materials are composed by covalently bonded weak van der Waals (vdW) interaction and can be realized as hetero structures with 2D ferro-electric material CuInP<sub>2</sub>S<sub>6</sub> at the gate stack. This paper demonstrates a vdW negative capacitance field effect transistor (NCFET) structure in TCAD and the design was validated for voltage-current Characteristics. Parametric analysis shows MoS<sub>2</sub> with phenomenal on/off ratio, narrow hysteresis than the counterparts. Simulation shows that MoS<sub>2</sub> vdW NCFET has a high transconductance of 2.36 <italic toggle=\\\"yes\\\">µ</italic>S <italic toggle=\\\"yes\\\">µ</italic>m<sup>−1</sup>. A steep slope of 28.54 mV dec<sup>−1</sup> is seen in MoS<sub>2</sub> vdW NCFET which promises the performance of logic applications at a reduced supply voltage.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6641/ad2b09\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad2b09","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

传统 MOSFET 不可避免地存在玻尔兹曼极限,这使其无法用于低功耗应用。器件物理学研究可以通过选择满足我们要求的适当材料来解决这一问题。最近,二维过渡金属二掺杂镓(TMD)材料正受到越来越多的关注,因为它们有助于缓解短沟道效应和 DIBL 问题。TMD 材料由共价键结合的弱范德华(vdW)相互作用组成,可以与二维铁电材料 CuInP2S6 在栅堆上实现异质结构。本文在 TCAD 中演示了 vdW 负电容场效应晶体管(NCFET)结构,并对设计进行了电压-电流特性验证。参数分析表明,与同类产品相比,MoS2 具有惊人的导通/关断比和较窄的滞后。仿真显示,MoS2 vdW NCFET 的跨导率高达 2.36 µS µm-1。MoS2 vdW NCFET 具有 28.54 mV dec-1 的陡峭斜率,有望在降低电源电压的情况下实现逻辑应用性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TMD material investigation for a low hysteresis vdW NCFET logic transistor
Boltzmann limit is inevitable in conventional MOSFETs, which prevent them to be used for low-power applications. Research in device physics can address this problem by selection of proper materials satisfying our requirements. Recently, 2D transition metal di-chalcogenide (TMD) materials are gaining interest because they help alleviate short-channel effects and DIBL problems. The TMD materials are composed by covalently bonded weak van der Waals (vdW) interaction and can be realized as hetero structures with 2D ferro-electric material CuInP2S6 at the gate stack. This paper demonstrates a vdW negative capacitance field effect transistor (NCFET) structure in TCAD and the design was validated for voltage-current Characteristics. Parametric analysis shows MoS2 with phenomenal on/off ratio, narrow hysteresis than the counterparts. Simulation shows that MoS2 vdW NCFET has a high transconductance of 2.36 µS µm−1. A steep slope of 28.54 mV dec−1 is seen in MoS2 vdW NCFET which promises the performance of logic applications at a reduced supply voltage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Intentions to move abroad among medical students: a cross-sectional study to investigate determinants and opinions. The change process questionnaire (CPQ): A psychometric validation. Prevalence and predictors of hand hygiene compliance in clinical, surgical and intensive care unit wards: results of a second cross-sectional study at the Umberto I teaching hospital of Rome. The prevention of medication errors in the home care setting: a scoping review. Differential Costs of Raising Grandchildren on Older Mother-Adult Child Relations in Black and White Families.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1