Blautia Coccoides 是一种新发现的细菌,会因亮氨酸匮乏而增加,并具有改善代谢紊乱的新功能。

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2024-03-01 DOI:10.1002/advs.202309255
Yuguo Niu, Xiaoming Hu, Yali Song, Cunchuan Wang, Peixiang Luo, Shihong Ni, Fuxin Jiao, Ju Qiu, Weihong Jiang, Sheng Yang, Jun Chen, Rui Huang, Haizhou Jiang, Shanghai Chen, Qiwei Zhai, Jia Xiao, Feifan Guo
{"title":"Blautia Coccoides 是一种新发现的细菌,会因亮氨酸匮乏而增加,并具有改善代谢紊乱的新功能。","authors":"Yuguo Niu,&nbsp;Xiaoming Hu,&nbsp;Yali Song,&nbsp;Cunchuan Wang,&nbsp;Peixiang Luo,&nbsp;Shihong Ni,&nbsp;Fuxin Jiao,&nbsp;Ju Qiu,&nbsp;Weihong Jiang,&nbsp;Sheng Yang,&nbsp;Jun Chen,&nbsp;Rui Huang,&nbsp;Haizhou Jiang,&nbsp;Shanghai Chen,&nbsp;Qiwei Zhai,&nbsp;Jia Xiao,&nbsp;Feifan Guo","doi":"10.1002/advs.202309255","DOIUrl":null,"url":null,"abstract":"<p>Gut microbiota is linked to human metabolic diseases. The previous work showed that leucine deprivation improved metabolic dysfunction, but whether leucine deprivation alters certain specific species of bacterium that brings these benefits remains unclear. Here, this work finds that leucine deprivation alters gut microbiota composition, which is sufficient and necessary for the metabolic improvements induced by leucine deprivation. Among all the affected bacteria, <i>B. coccoides</i> is markedly increased in the feces of leucine-deprived mice. Moreover, gavage with <i>B. coccoides</i> improves insulin sensitivity and reduces body fat in high-fat diet (HFD) mice, and singly colonization of <i>B. coccoides</i> increases insulin sensitivity in gnotobiotic mice. The effects of <i>B. coccoides</i> are mediated by metabolizing tryptophan into indole-3-acetic acid (I3AA) that activates the aryl hydrocarbon receptor (AhR) in the liver. Finally, this work reveals that reduced fecal <i>B. coccoides</i> and I3AA levels are associated with the clinical metabolic syndrome. These findings suggest that <i>B. coccoides</i> is a newly identified bacterium increased by leucine deprivation, which improves metabolic disorders via metabolizing tryptophan into I3AA.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"11 18","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202309255","citationCount":"0","resultStr":"{\"title\":\"Blautia Coccoides is a Newly Identified Bacterium Increased by Leucine Deprivation and has a Novel Function in Improving Metabolic Disorders\",\"authors\":\"Yuguo Niu,&nbsp;Xiaoming Hu,&nbsp;Yali Song,&nbsp;Cunchuan Wang,&nbsp;Peixiang Luo,&nbsp;Shihong Ni,&nbsp;Fuxin Jiao,&nbsp;Ju Qiu,&nbsp;Weihong Jiang,&nbsp;Sheng Yang,&nbsp;Jun Chen,&nbsp;Rui Huang,&nbsp;Haizhou Jiang,&nbsp;Shanghai Chen,&nbsp;Qiwei Zhai,&nbsp;Jia Xiao,&nbsp;Feifan Guo\",\"doi\":\"10.1002/advs.202309255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Gut microbiota is linked to human metabolic diseases. The previous work showed that leucine deprivation improved metabolic dysfunction, but whether leucine deprivation alters certain specific species of bacterium that brings these benefits remains unclear. Here, this work finds that leucine deprivation alters gut microbiota composition, which is sufficient and necessary for the metabolic improvements induced by leucine deprivation. Among all the affected bacteria, <i>B. coccoides</i> is markedly increased in the feces of leucine-deprived mice. Moreover, gavage with <i>B. coccoides</i> improves insulin sensitivity and reduces body fat in high-fat diet (HFD) mice, and singly colonization of <i>B. coccoides</i> increases insulin sensitivity in gnotobiotic mice. The effects of <i>B. coccoides</i> are mediated by metabolizing tryptophan into indole-3-acetic acid (I3AA) that activates the aryl hydrocarbon receptor (AhR) in the liver. Finally, this work reveals that reduced fecal <i>B. coccoides</i> and I3AA levels are associated with the clinical metabolic syndrome. These findings suggest that <i>B. coccoides</i> is a newly identified bacterium increased by leucine deprivation, which improves metabolic disorders via metabolizing tryptophan into I3AA.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"11 18\",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202309255\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/advs.202309255\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202309255","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

肠道微生物群与人类代谢性疾病有关。之前的研究表明,剥夺亮氨酸可改善代谢功能障碍,但剥夺亮氨酸是否会改变某些特定种类的细菌,从而带来这些益处,目前仍不清楚。在这里,这项研究发现,亮氨酸剥夺会改变肠道微生物群的组成,而这是亮氨酸剥夺诱导代谢改善的充分和必要条件。在所有受影响的细菌中,B. coccoides 在被剥夺亮氨酸的小鼠粪便中明显增加。此外,对高脂饮食(HFD)小鼠灌胃椰子酵母菌可提高胰岛素敏感性并减少体脂,而单个定殖椰子酵母菌可提高非生物小鼠的胰岛素敏感性。椰子酵母菌的作用是通过将色氨酸代谢成吲哚-3-乙酸(I3AA)来实现的,而吲哚-3-乙酸会激活肝脏中的芳基烃受体(AhR)。最后,这项研究发现,粪便中椰子酵母菌和 I3AA 水平的降低与临床代谢综合征有关。这些研究结果表明,椰子酵母菌是一种新发现的细菌,它能通过将色氨酸代谢成 I3AA 来增加亮氨酸的摄入量,从而改善代谢紊乱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blautia Coccoides is a Newly Identified Bacterium Increased by Leucine Deprivation and has a Novel Function in Improving Metabolic Disorders

Gut microbiota is linked to human metabolic diseases. The previous work showed that leucine deprivation improved metabolic dysfunction, but whether leucine deprivation alters certain specific species of bacterium that brings these benefits remains unclear. Here, this work finds that leucine deprivation alters gut microbiota composition, which is sufficient and necessary for the metabolic improvements induced by leucine deprivation. Among all the affected bacteria, B. coccoides is markedly increased in the feces of leucine-deprived mice. Moreover, gavage with B. coccoides improves insulin sensitivity and reduces body fat in high-fat diet (HFD) mice, and singly colonization of B. coccoides increases insulin sensitivity in gnotobiotic mice. The effects of B. coccoides are mediated by metabolizing tryptophan into indole-3-acetic acid (I3AA) that activates the aryl hydrocarbon receptor (AhR) in the liver. Finally, this work reveals that reduced fecal B. coccoides and I3AA levels are associated with the clinical metabolic syndrome. These findings suggest that B. coccoides is a newly identified bacterium increased by leucine deprivation, which improves metabolic disorders via metabolizing tryptophan into I3AA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
"Brick-Mortar-Binder" Design toward Highly Elastic, Hydrophobic, and Flame-Retardant Thermal Insulator. Boosted Efficiency of Fe2O3 for Photocatalytic CO2 Reduction via Engineering Fe-O-Ti Bonding. Cytoskeletal Vimentin Directs Cell-Cell Transmission of Hepatitis C Virus. Slow Metabolism-Driven Amplification of Hepatic PPARγ Agonism Mediates Benzbromarone-Induced Obesity-Specific Liver Injury. Tumor Site-Specific In Vivo Theranostics Enabled by Microenvironment-Dependent Chemical Transformation and Self-Amplifying Effect.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1