利用时间明确的生境选择(TEHS)模型,缩小运动数据与连通性分析之间的差距。

IF 3.4 1区 生物学 Q2 ECOLOGY Movement Ecology Pub Date : 2024-03-01 DOI:10.1186/s40462-024-00461-1
Denis Valle, Nina Attias, Joshua A Cullen, Mevin B Hooten, Aline Giroux, Luiz Gustavo R Oliveira-Santos, Arnaud L J Desbiez, Robert J Fletcher
{"title":"利用时间明确的生境选择(TEHS)模型,缩小运动数据与连通性分析之间的差距。","authors":"Denis Valle, Nina Attias, Joshua A Cullen, Mevin B Hooten, Aline Giroux, Luiz Gustavo R Oliveira-Santos, Arnaud L J Desbiez, Robert J Fletcher","doi":"10.1186/s40462-024-00461-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Understanding how to connect habitat remnants to facilitate the movement of species is a critical task in an increasingly fragmented world impacted by human activities. The identification of dispersal routes and corridors through connectivity analysis requires measures of landscape resistance but there has been no consensus on how to calculate resistance from habitat characteristics, potentially leading to very different connectivity outcomes.</p><p><strong>Methods: </strong>We propose a new model, called the Time-Explicit Habitat Selection (TEHS) model, that can be directly used for connectivity analysis. The TEHS model decomposes the movement process in a principled approach into a time and a selection component, providing complementary information regarding space use by separately assessing the drivers of time to traverse the landscape and the drivers of habitat selection. These models are illustrated using GPS-tracking data from giant anteaters (Myrmecophaga tridactyla) in the Pantanal wetlands of Brazil.</p><p><strong>Results: </strong>The time model revealed that the fastest movements tended to occur between 8 p.m. and 5 a.m., suggesting a crepuscular/nocturnal behavior. Giant anteaters moved faster over wetlands while moving much slower over forests and savannas, in comparison to grasslands. We also found that wetlands were consistently avoided whereas forest and savannas tended to be selected. Importantly, this model revealed that selection for forest increased with temperature, suggesting that forests may act as important thermal shelters when temperatures are high. Finally, using the spatial absorbing Markov chain framework, we show that the TEHS model results can be used to simulate movement and connectivity within a fragmented landscape, revealing that giant anteaters will often not use the shortest-distance path to the destination patch due to avoidance of certain habitats.</p><p><strong>Conclusions: </strong>The proposed approach can be used to characterize how landscape features are perceived by individuals through the decomposition of movement patterns into a time and a habitat selection component. Additionally, this framework can help bridge the gap between movement-based models and connectivity analysis, enabling the generation of time-explicit connectivity results.</p>","PeriodicalId":54288,"journal":{"name":"Movement Ecology","volume":"12 1","pages":"19"},"PeriodicalIF":3.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10908110/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bridging the gap between movement data and connectivity analysis using the Time-Explicit Habitat Selection (TEHS) model.\",\"authors\":\"Denis Valle, Nina Attias, Joshua A Cullen, Mevin B Hooten, Aline Giroux, Luiz Gustavo R Oliveira-Santos, Arnaud L J Desbiez, Robert J Fletcher\",\"doi\":\"10.1186/s40462-024-00461-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Understanding how to connect habitat remnants to facilitate the movement of species is a critical task in an increasingly fragmented world impacted by human activities. The identification of dispersal routes and corridors through connectivity analysis requires measures of landscape resistance but there has been no consensus on how to calculate resistance from habitat characteristics, potentially leading to very different connectivity outcomes.</p><p><strong>Methods: </strong>We propose a new model, called the Time-Explicit Habitat Selection (TEHS) model, that can be directly used for connectivity analysis. The TEHS model decomposes the movement process in a principled approach into a time and a selection component, providing complementary information regarding space use by separately assessing the drivers of time to traverse the landscape and the drivers of habitat selection. These models are illustrated using GPS-tracking data from giant anteaters (Myrmecophaga tridactyla) in the Pantanal wetlands of Brazil.</p><p><strong>Results: </strong>The time model revealed that the fastest movements tended to occur between 8 p.m. and 5 a.m., suggesting a crepuscular/nocturnal behavior. Giant anteaters moved faster over wetlands while moving much slower over forests and savannas, in comparison to grasslands. We also found that wetlands were consistently avoided whereas forest and savannas tended to be selected. Importantly, this model revealed that selection for forest increased with temperature, suggesting that forests may act as important thermal shelters when temperatures are high. Finally, using the spatial absorbing Markov chain framework, we show that the TEHS model results can be used to simulate movement and connectivity within a fragmented landscape, revealing that giant anteaters will often not use the shortest-distance path to the destination patch due to avoidance of certain habitats.</p><p><strong>Conclusions: </strong>The proposed approach can be used to characterize how landscape features are perceived by individuals through the decomposition of movement patterns into a time and a habitat selection component. Additionally, this framework can help bridge the gap between movement-based models and connectivity analysis, enabling the generation of time-explicit connectivity results.</p>\",\"PeriodicalId\":54288,\"journal\":{\"name\":\"Movement Ecology\",\"volume\":\"12 1\",\"pages\":\"19\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10908110/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Movement Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40462-024-00461-1\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Movement Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40462-024-00461-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:在受人类活动影响日益破碎化的世界中,了解如何连接残留的栖息地以促进物种的迁移是一项至关重要的任务。通过连通性分析确定扩散路线和走廊需要测量景观阻力,但如何根据栖息地特征计算阻力尚未达成共识,这可能导致截然不同的连通性结果:我们提出了一种可直接用于连通性分析的新模型,即时间明确的生境选择(TEHS)模型。TEHS模型将运动过程原则性地分解为时间和选择两个部分,通过分别评估穿越地形的时间驱动因素和栖息地选择驱动因素,提供有关空间利用的补充信息。我们使用巴西潘塔纳尔湿地巨食蚁兽(Myrmecophaga tridactyla)的 GPS 跟踪数据对这些模型进行了说明:时间模型显示,移动速度最快的时间往往发生在晚上 8 点到凌晨 5 点之间,这表明巨食蚁兽有昼伏夜出的行为。与草原相比,巨食蚁兽在湿地上移动得更快,而在森林和稀树草原上移动得更慢。我们还发现,湿地总是被避开,而森林和稀树草原则倾向于被选择。重要的是,该模型显示,对森林的选择随温度升高而增加,这表明当温度较高时,森林可能是重要的热庇护所。最后,利用空间吸收马尔可夫链框架,我们展示了 TEHS 模型结果可用于模拟破碎景观中的移动和连通性,揭示了大食蚁兽由于回避某些栖息地,通常不会使用最短距离路径到达目的地斑块:结论:通过将运动模式分解为时间和栖息地选择两个部分,所提出的方法可用于描述个体是如何感知地貌特征的。此外,该框架还有助于缩小基于运动的模型与连通性分析之间的差距,从而生成时间明确的连通性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bridging the gap between movement data and connectivity analysis using the Time-Explicit Habitat Selection (TEHS) model.

Background: Understanding how to connect habitat remnants to facilitate the movement of species is a critical task in an increasingly fragmented world impacted by human activities. The identification of dispersal routes and corridors through connectivity analysis requires measures of landscape resistance but there has been no consensus on how to calculate resistance from habitat characteristics, potentially leading to very different connectivity outcomes.

Methods: We propose a new model, called the Time-Explicit Habitat Selection (TEHS) model, that can be directly used for connectivity analysis. The TEHS model decomposes the movement process in a principled approach into a time and a selection component, providing complementary information regarding space use by separately assessing the drivers of time to traverse the landscape and the drivers of habitat selection. These models are illustrated using GPS-tracking data from giant anteaters (Myrmecophaga tridactyla) in the Pantanal wetlands of Brazil.

Results: The time model revealed that the fastest movements tended to occur between 8 p.m. and 5 a.m., suggesting a crepuscular/nocturnal behavior. Giant anteaters moved faster over wetlands while moving much slower over forests and savannas, in comparison to grasslands. We also found that wetlands were consistently avoided whereas forest and savannas tended to be selected. Importantly, this model revealed that selection for forest increased with temperature, suggesting that forests may act as important thermal shelters when temperatures are high. Finally, using the spatial absorbing Markov chain framework, we show that the TEHS model results can be used to simulate movement and connectivity within a fragmented landscape, revealing that giant anteaters will often not use the shortest-distance path to the destination patch due to avoidance of certain habitats.

Conclusions: The proposed approach can be used to characterize how landscape features are perceived by individuals through the decomposition of movement patterns into a time and a habitat selection component. Additionally, this framework can help bridge the gap between movement-based models and connectivity analysis, enabling the generation of time-explicit connectivity results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Movement Ecology
Movement Ecology Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.60
自引率
4.90%
发文量
47
审稿时长
23 weeks
期刊介绍: Movement Ecology is an open-access interdisciplinary journal publishing novel insights from empirical and theoretical approaches into the ecology of movement of the whole organism - either animals, plants or microorganisms - as the central theme. We welcome manuscripts on any taxa and any movement phenomena (e.g. foraging, dispersal and seasonal migration) addressing important research questions on the patterns, mechanisms, causes and consequences of organismal movement. Manuscripts will be rigorously peer-reviewed to ensure novelty and high quality.
期刊最新文献
How do red foxes (Vulpes vulpes) explore their environment? Characteristics of movement patterns in time and space. North American avian species that migrate in flocks show greater long-term non-breeding range shift rates. Seasonal coastal residency and large-scale migration of two grey mullet species in temperate European waters. The influence of thermal and hypoxia induced habitat compression on walleye (Sander vitreus) movements in a temperate lake. Density-dependent distributions of hosts and parasitoids resulting from density-independent dispersal rules: implications for host-parasitoid interactions and population dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1