John Wang , Zhaoqiong Qin , Jeffrey Hsu , Bin Zhou
{"title":"融合机器学习算法和传统统计预测模型分析美国医疗支出","authors":"John Wang , Zhaoqiong Qin , Jeffrey Hsu , Bin Zhou","doi":"10.1016/j.health.2024.100312","DOIUrl":null,"url":null,"abstract":"<div><p>The American healthcare system allocates considerable resources compared to peer-developed nations. However, outcomes significantly trail behind, particularly in life expectancy. This study addresses questions about the enduring trends in healthcare spending as a percentage of Gross Domestic Product (GDP), notable factors contributing to this concerning trend, and the timing to apply an emergency brake to curb this accelerating trajectory. Advanced machine learning algorithms, such as Random Forest and Support Vector Regression (SVR), in conjunction with traditional statistical forecasting methods, are used to forecast future patterns. The research underscores the importance of healthcare analytics in unraveling the intricacies of the healthcare system. The findings highlight the pressing need for effective policies to confront this mounting challenge.</p></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"5 ","pages":"Article 100312"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772442524000145/pdfft?md5=9472ede508e2c78da5cca92cfb5cf1ed&pid=1-s2.0-S2772442524000145-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A fusion of machine learning algorithms and traditional statistical forecasting models for analyzing American healthcare expenditure\",\"authors\":\"John Wang , Zhaoqiong Qin , Jeffrey Hsu , Bin Zhou\",\"doi\":\"10.1016/j.health.2024.100312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The American healthcare system allocates considerable resources compared to peer-developed nations. However, outcomes significantly trail behind, particularly in life expectancy. This study addresses questions about the enduring trends in healthcare spending as a percentage of Gross Domestic Product (GDP), notable factors contributing to this concerning trend, and the timing to apply an emergency brake to curb this accelerating trajectory. Advanced machine learning algorithms, such as Random Forest and Support Vector Regression (SVR), in conjunction with traditional statistical forecasting methods, are used to forecast future patterns. The research underscores the importance of healthcare analytics in unraveling the intricacies of the healthcare system. The findings highlight the pressing need for effective policies to confront this mounting challenge.</p></div>\",\"PeriodicalId\":73222,\"journal\":{\"name\":\"Healthcare analytics (New York, N.Y.)\",\"volume\":\"5 \",\"pages\":\"Article 100312\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772442524000145/pdfft?md5=9472ede508e2c78da5cca92cfb5cf1ed&pid=1-s2.0-S2772442524000145-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Healthcare analytics (New York, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772442524000145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442524000145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A fusion of machine learning algorithms and traditional statistical forecasting models for analyzing American healthcare expenditure
The American healthcare system allocates considerable resources compared to peer-developed nations. However, outcomes significantly trail behind, particularly in life expectancy. This study addresses questions about the enduring trends in healthcare spending as a percentage of Gross Domestic Product (GDP), notable factors contributing to this concerning trend, and the timing to apply an emergency brake to curb this accelerating trajectory. Advanced machine learning algorithms, such as Random Forest and Support Vector Regression (SVR), in conjunction with traditional statistical forecasting methods, are used to forecast future patterns. The research underscores the importance of healthcare analytics in unraveling the intricacies of the healthcare system. The findings highlight the pressing need for effective policies to confront this mounting challenge.