在噪声量子计算机上使用量子神经网络进行网络异常检测

Alon Kukliansky;Marko Orescanin;Chad Bollmann;Theodore Huffmire
{"title":"在噪声量子计算机上使用量子神经网络进行网络异常检测","authors":"Alon Kukliansky;Marko Orescanin;Chad Bollmann;Theodore Huffmire","doi":"10.1109/TQE.2024.3359574","DOIUrl":null,"url":null,"abstract":"The escalating threat and impact of network-based attacks necessitate innovative intrusion detection systems. Machine learning has shown promise, with recent strides in quantum machine learning offering new avenues. However, the potential of quantum computing is tempered by challenges in current noisy intermediate-scale quantum era machines. In this article, we explore quantum neural networks (QNNs) for intrusion detection, optimizing their performance within current quantum computing limitations. Our approach includes efficient classical feature encoding, QNN classifier selection, and performance tuning leveraging current quantum computational power. This study culminates in an optimized multilayered QNN architecture for network intrusion detection. A small version of the proposed architecture was implemented on IonQ's Aria-1 quantum computer, achieving a notable 0.86 F1 score using the NF-UNSW-NB15 dataset. In addition, we introduce a novel metric, certainty factor, laying the foundation for future integration of uncertainty measures in quantum classification outputs. Moreover, this factor is used to predict the noise susceptibility of our quantum binary classification system.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10415536","citationCount":"0","resultStr":"{\"title\":\"Network Anomaly Detection Using Quantum Neural Networks on Noisy Quantum Computers\",\"authors\":\"Alon Kukliansky;Marko Orescanin;Chad Bollmann;Theodore Huffmire\",\"doi\":\"10.1109/TQE.2024.3359574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The escalating threat and impact of network-based attacks necessitate innovative intrusion detection systems. Machine learning has shown promise, with recent strides in quantum machine learning offering new avenues. However, the potential of quantum computing is tempered by challenges in current noisy intermediate-scale quantum era machines. In this article, we explore quantum neural networks (QNNs) for intrusion detection, optimizing their performance within current quantum computing limitations. Our approach includes efficient classical feature encoding, QNN classifier selection, and performance tuning leveraging current quantum computational power. This study culminates in an optimized multilayered QNN architecture for network intrusion detection. A small version of the proposed architecture was implemented on IonQ's Aria-1 quantum computer, achieving a notable 0.86 F1 score using the NF-UNSW-NB15 dataset. In addition, we introduce a novel metric, certainty factor, laying the foundation for future integration of uncertainty measures in quantum classification outputs. Moreover, this factor is used to predict the noise susceptibility of our quantum binary classification system.\",\"PeriodicalId\":100644,\"journal\":{\"name\":\"IEEE Transactions on Quantum Engineering\",\"volume\":\"5 \",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10415536\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Quantum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10415536/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10415536/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络攻击的威胁和影响不断升级,需要创新的入侵检测系统。机器学习大有可为,而量子机器学习的最新进展则提供了新的途径。然而,量子计算的潜力受到了当前噪声中等规模量子时代机器所面临挑战的制约。在本文中,我们探索了用于入侵检测的量子神经网络(QNN),在当前量子计算的限制条件下优化了其性能。我们的方法包括高效的经典特征编码、QNN 分类器选择以及利用当前量子计算能力进行性能调整。这项研究的最终成果是用于网络入侵检测的优化多层 QNN 架构。我们在 IonQ 的 Aria-1 量子计算机上实现了该架构的一个小型版本,并在 NF-UNSW-NB15 数据集上取得了 0.86 的显著 F1 分数。此外,我们还引入了一个新指标--确定性因子,为未来在量子分类输出中整合不确定性度量奠定了基础。此外,该因子还可用于预测量子二元分类系统的噪声敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Network Anomaly Detection Using Quantum Neural Networks on Noisy Quantum Computers
The escalating threat and impact of network-based attacks necessitate innovative intrusion detection systems. Machine learning has shown promise, with recent strides in quantum machine learning offering new avenues. However, the potential of quantum computing is tempered by challenges in current noisy intermediate-scale quantum era machines. In this article, we explore quantum neural networks (QNNs) for intrusion detection, optimizing their performance within current quantum computing limitations. Our approach includes efficient classical feature encoding, QNN classifier selection, and performance tuning leveraging current quantum computational power. This study culminates in an optimized multilayered QNN architecture for network intrusion detection. A small version of the proposed architecture was implemented on IonQ's Aria-1 quantum computer, achieving a notable 0.86 F1 score using the NF-UNSW-NB15 dataset. In addition, we introduce a novel metric, certainty factor, laying the foundation for future integration of uncertainty measures in quantum classification outputs. Moreover, this factor is used to predict the noise susceptibility of our quantum binary classification system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
期刊最新文献
IEEE Transactions on Quantum Engineering Publication Information Dissipative Variational Quantum Algorithms for Gibbs State Preparation TAQNet: Traffic-Aware Minimum-Cost Quantum Communication Network Planning FPGA-Based Synchronization of Frequency-Domain Interferometer for QKD Grover's Oracle for the Shortest Vector Problem and Its Application in Hybrid Classical–Quantum Solvers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1