Alberto Tarable;Rudi Paolo Paganelli;Marco Ferrari
{"title":"用于量子密钥分发的无鼠 Protograph LDPC 编码","authors":"Alberto Tarable;Rudi Paolo Paganelli;Marco Ferrari","doi":"10.1109/TQE.2024.3361810","DOIUrl":null,"url":null,"abstract":"Information reconciliation (IR) is a key step in quantum key distribution (QKD). In recent years, blind reconciliation based on low-density parity-check (LDPC) codes has replaced Cascade as a standard de facto since it guarantees efficient IR without a priori quantum bit error rate estimation and with limited interactivity between the parties, which is essential in high key-rate and long-distance QKD links. In this article, a novel blind reconciliation scheme based on rateless protograph LDPC codes is proposed. The rate adaptivity, essential for blind reconciliation, is obtained by progressively splitting LDPC check nodes, which ensures a number of degrees of freedom larger than puncturing in code design. The protograph nature of the LDPC codes allows us to use the same designed codes with a large variety of sifted-key lengths, enabling block length flexibility, which is important in largely varying key-rate link conditions. The code design is based on a new protograph discretized density evolution tool.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10418979","citationCount":"0","resultStr":"{\"title\":\"Rateless Protograph LDPC Codes for Quantum Key Distribution\",\"authors\":\"Alberto Tarable;Rudi Paolo Paganelli;Marco Ferrari\",\"doi\":\"10.1109/TQE.2024.3361810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Information reconciliation (IR) is a key step in quantum key distribution (QKD). In recent years, blind reconciliation based on low-density parity-check (LDPC) codes has replaced Cascade as a standard de facto since it guarantees efficient IR without a priori quantum bit error rate estimation and with limited interactivity between the parties, which is essential in high key-rate and long-distance QKD links. In this article, a novel blind reconciliation scheme based on rateless protograph LDPC codes is proposed. The rate adaptivity, essential for blind reconciliation, is obtained by progressively splitting LDPC check nodes, which ensures a number of degrees of freedom larger than puncturing in code design. The protograph nature of the LDPC codes allows us to use the same designed codes with a large variety of sifted-key lengths, enabling block length flexibility, which is important in largely varying key-rate link conditions. The code design is based on a new protograph discretized density evolution tool.\",\"PeriodicalId\":100644,\"journal\":{\"name\":\"IEEE Transactions on Quantum Engineering\",\"volume\":\"5 \",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10418979\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Quantum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10418979/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10418979/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rateless Protograph LDPC Codes for Quantum Key Distribution
Information reconciliation (IR) is a key step in quantum key distribution (QKD). In recent years, blind reconciliation based on low-density parity-check (LDPC) codes has replaced Cascade as a standard de facto since it guarantees efficient IR without a priori quantum bit error rate estimation and with limited interactivity between the parties, which is essential in high key-rate and long-distance QKD links. In this article, a novel blind reconciliation scheme based on rateless protograph LDPC codes is proposed. The rate adaptivity, essential for blind reconciliation, is obtained by progressively splitting LDPC check nodes, which ensures a number of degrees of freedom larger than puncturing in code design. The protograph nature of the LDPC codes allows us to use the same designed codes with a large variety of sifted-key lengths, enabling block length flexibility, which is important in largely varying key-rate link conditions. The code design is based on a new protograph discretized density evolution tool.