{"title":"混合最小二乘法-总最小二乘法问题的高斯-牛顿法","authors":"Qiaohua Liu, Shan Wang, Yimin Wei","doi":"10.1007/s10092-024-00568-2","DOIUrl":null,"url":null,"abstract":"<p>The approximate linear equation <span>\\(Ax\\approx b\\)</span> with some columns of <i>A</i> error-free can be solved via mixed least squares-total least squares (MTLS) model by minimizing a nonlinear function. This paper is devoted to the Gauss–Newton iteration for the MTLS problem. With an appropriately chosen initial vector, each iteration step of the standard Gauss–Newton method requires to solve a smaller-size least squares problem, in which the QR of the coefficient matrix needs a rank-one modification. To improve the convergence, we devise a relaxed Gauss–Newton (RGN) method by introducing a relaxation factor and provide the convergence results as well. The convergence is shown to be closely related to the ratio of the square of subspace-restricted singular values of [<i>A</i>, <i>b</i>]. The RGN can also be modified to solve the total least squares (TLS) problem. Applying the RGN method to a Bursa–Wolf model in parameter estimation, numerical results show that the RGN-based MTLS method behaves much better than the RGN-based TLS method. Theoretical convergence properties of the RGN-MTLS algorithm are also illustrated by numerical tests.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":"45 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Gauss–Newton method for mixed least squares-total least squares problems\",\"authors\":\"Qiaohua Liu, Shan Wang, Yimin Wei\",\"doi\":\"10.1007/s10092-024-00568-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The approximate linear equation <span>\\\\(Ax\\\\approx b\\\\)</span> with some columns of <i>A</i> error-free can be solved via mixed least squares-total least squares (MTLS) model by minimizing a nonlinear function. This paper is devoted to the Gauss–Newton iteration for the MTLS problem. With an appropriately chosen initial vector, each iteration step of the standard Gauss–Newton method requires to solve a smaller-size least squares problem, in which the QR of the coefficient matrix needs a rank-one modification. To improve the convergence, we devise a relaxed Gauss–Newton (RGN) method by introducing a relaxation factor and provide the convergence results as well. The convergence is shown to be closely related to the ratio of the square of subspace-restricted singular values of [<i>A</i>, <i>b</i>]. The RGN can also be modified to solve the total least squares (TLS) problem. Applying the RGN method to a Bursa–Wolf model in parameter estimation, numerical results show that the RGN-based MTLS method behaves much better than the RGN-based TLS method. Theoretical convergence properties of the RGN-MTLS algorithm are also illustrated by numerical tests.</p>\",\"PeriodicalId\":9522,\"journal\":{\"name\":\"Calcolo\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calcolo\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10092-024-00568-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calcolo","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-024-00568-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Gauss–Newton method for mixed least squares-total least squares problems
The approximate linear equation \(Ax\approx b\) with some columns of A error-free can be solved via mixed least squares-total least squares (MTLS) model by minimizing a nonlinear function. This paper is devoted to the Gauss–Newton iteration for the MTLS problem. With an appropriately chosen initial vector, each iteration step of the standard Gauss–Newton method requires to solve a smaller-size least squares problem, in which the QR of the coefficient matrix needs a rank-one modification. To improve the convergence, we devise a relaxed Gauss–Newton (RGN) method by introducing a relaxation factor and provide the convergence results as well. The convergence is shown to be closely related to the ratio of the square of subspace-restricted singular values of [A, b]. The RGN can also be modified to solve the total least squares (TLS) problem. Applying the RGN method to a Bursa–Wolf model in parameter estimation, numerical results show that the RGN-based MTLS method behaves much better than the RGN-based TLS method. Theoretical convergence properties of the RGN-MTLS algorithm are also illustrated by numerical tests.
期刊介绍:
Calcolo is a quarterly of the Italian National Research Council, under the direction of the Institute for Informatics and Telematics in Pisa. Calcolo publishes original contributions in English on Numerical Analysis and its Applications, and on the Theory of Computation.
The main focus of the journal is on Numerical Linear Algebra, Approximation Theory and its Applications, Numerical Solution of Differential and Integral Equations, Computational Complexity, Algorithmics, Mathematical Aspects of Computer Science, Optimization Theory.
Expository papers will also appear from time to time as an introduction to emerging topics in one of the above mentioned fields. There will be a "Report" section, with abstracts of PhD Theses, news and reports from conferences and book reviews. All submissions will be carefully refereed.