Ning Li, Tianjiao Liu, Mengqi Tian, Junrui Duan, Mu Yao, Runjun Sun
{"title":"基于不锈钢/棉混纺纱纬编织物电磁屏蔽性能的综合性能评估","authors":"Ning Li, Tianjiao Liu, Mengqi Tian, Junrui Duan, Mu Yao, Runjun Sun","doi":"10.1515/epoly-2023-0065","DOIUrl":null,"url":null,"abstract":"Electromagnetic shielding (EMS) fabric is an effective way to prevent electromagnetic (EM) radiation. However, the research about mechanism analysis of the fabrics’ structure, EM wave (EMW) incident direction, and EMW frequency on the EMS properties of knitted fabrics is discordant at present. Meanwhile, researchers are focused on improving the EMS efficiency of the fabric but rarely discussed the thermal-wet comfort of the fabric. Therefore, in this study a series of weft-knitted fabrics within stainless steel/cotton (30/70) blended yarns were knitted, and the effects of EMW incident direction, stitches, loop lengths, and frequency on EMS effectiveness (EMSE) were analyzed. Meanwhile, the EMS property, warmth retention property, air permeability, moisture permeability, and bursting strength were selected as the evaluation index to evaluate the comprehensive properties of the fabrics by fuzzy mathematics. The results showed that all factors had different degrees of influence on EMSE, and the weft inlay stitch had both the functionality and thermal-wet comfort, which was excellent EMSE in knitted fabric. These results are expected to provide a reference to the design of EMS weft-knitted fabrics.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":"102 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive performance evaluation based on electromagnetic shielding properties of the weft-knitted fabrics made by stainless steel/cotton blended yarn\",\"authors\":\"Ning Li, Tianjiao Liu, Mengqi Tian, Junrui Duan, Mu Yao, Runjun Sun\",\"doi\":\"10.1515/epoly-2023-0065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electromagnetic shielding (EMS) fabric is an effective way to prevent electromagnetic (EM) radiation. However, the research about mechanism analysis of the fabrics’ structure, EM wave (EMW) incident direction, and EMW frequency on the EMS properties of knitted fabrics is discordant at present. Meanwhile, researchers are focused on improving the EMS efficiency of the fabric but rarely discussed the thermal-wet comfort of the fabric. Therefore, in this study a series of weft-knitted fabrics within stainless steel/cotton (30/70) blended yarns were knitted, and the effects of EMW incident direction, stitches, loop lengths, and frequency on EMS effectiveness (EMSE) were analyzed. Meanwhile, the EMS property, warmth retention property, air permeability, moisture permeability, and bursting strength were selected as the evaluation index to evaluate the comprehensive properties of the fabrics by fuzzy mathematics. The results showed that all factors had different degrees of influence on EMSE, and the weft inlay stitch had both the functionality and thermal-wet comfort, which was excellent EMSE in knitted fabric. These results are expected to provide a reference to the design of EMS weft-knitted fabrics.\",\"PeriodicalId\":11806,\"journal\":{\"name\":\"e-Polymers\",\"volume\":\"102 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"e-Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/epoly-2023-0065\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/epoly-2023-0065","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Comprehensive performance evaluation based on electromagnetic shielding properties of the weft-knitted fabrics made by stainless steel/cotton blended yarn
Electromagnetic shielding (EMS) fabric is an effective way to prevent electromagnetic (EM) radiation. However, the research about mechanism analysis of the fabrics’ structure, EM wave (EMW) incident direction, and EMW frequency on the EMS properties of knitted fabrics is discordant at present. Meanwhile, researchers are focused on improving the EMS efficiency of the fabric but rarely discussed the thermal-wet comfort of the fabric. Therefore, in this study a series of weft-knitted fabrics within stainless steel/cotton (30/70) blended yarns were knitted, and the effects of EMW incident direction, stitches, loop lengths, and frequency on EMS effectiveness (EMSE) were analyzed. Meanwhile, the EMS property, warmth retention property, air permeability, moisture permeability, and bursting strength were selected as the evaluation index to evaluate the comprehensive properties of the fabrics by fuzzy mathematics. The results showed that all factors had different degrees of influence on EMSE, and the weft inlay stitch had both the functionality and thermal-wet comfort, which was excellent EMSE in knitted fabric. These results are expected to provide a reference to the design of EMS weft-knitted fabrics.
期刊介绍:
e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome.
The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.