基于不锈钢/棉混纺纱纬编织物电磁屏蔽性能的综合性能评估

IF 3.2 3区 化学 Q2 POLYMER SCIENCE e-Polymers Pub Date : 2024-03-01 DOI:10.1515/epoly-2023-0065
Ning Li, Tianjiao Liu, Mengqi Tian, Junrui Duan, Mu Yao, Runjun Sun
{"title":"基于不锈钢/棉混纺纱纬编织物电磁屏蔽性能的综合性能评估","authors":"Ning Li, Tianjiao Liu, Mengqi Tian, Junrui Duan, Mu Yao, Runjun Sun","doi":"10.1515/epoly-2023-0065","DOIUrl":null,"url":null,"abstract":"Electromagnetic shielding (EMS) fabric is an effective way to prevent electromagnetic (EM) radiation. However, the research about mechanism analysis of the fabrics’ structure, EM wave (EMW) incident direction, and EMW frequency on the EMS properties of knitted fabrics is discordant at present. Meanwhile, researchers are focused on improving the EMS efficiency of the fabric but rarely discussed the thermal-wet comfort of the fabric. Therefore, in this study a series of weft-knitted fabrics within stainless steel/cotton (30/70) blended yarns were knitted, and the effects of EMW incident direction, stitches, loop lengths, and frequency on EMS effectiveness (EMSE) were analyzed. Meanwhile, the EMS property, warmth retention property, air permeability, moisture permeability, and bursting strength were selected as the evaluation index to evaluate the comprehensive properties of the fabrics by fuzzy mathematics. The results showed that all factors had different degrees of influence on EMSE, and the weft inlay stitch had both the functionality and thermal-wet comfort, which was excellent EMSE in knitted fabric. These results are expected to provide a reference to the design of EMS weft-knitted fabrics.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":"102 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive performance evaluation based on electromagnetic shielding properties of the weft-knitted fabrics made by stainless steel/cotton blended yarn\",\"authors\":\"Ning Li, Tianjiao Liu, Mengqi Tian, Junrui Duan, Mu Yao, Runjun Sun\",\"doi\":\"10.1515/epoly-2023-0065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electromagnetic shielding (EMS) fabric is an effective way to prevent electromagnetic (EM) radiation. However, the research about mechanism analysis of the fabrics’ structure, EM wave (EMW) incident direction, and EMW frequency on the EMS properties of knitted fabrics is discordant at present. Meanwhile, researchers are focused on improving the EMS efficiency of the fabric but rarely discussed the thermal-wet comfort of the fabric. Therefore, in this study a series of weft-knitted fabrics within stainless steel/cotton (30/70) blended yarns were knitted, and the effects of EMW incident direction, stitches, loop lengths, and frequency on EMS effectiveness (EMSE) were analyzed. Meanwhile, the EMS property, warmth retention property, air permeability, moisture permeability, and bursting strength were selected as the evaluation index to evaluate the comprehensive properties of the fabrics by fuzzy mathematics. The results showed that all factors had different degrees of influence on EMSE, and the weft inlay stitch had both the functionality and thermal-wet comfort, which was excellent EMSE in knitted fabric. These results are expected to provide a reference to the design of EMS weft-knitted fabrics.\",\"PeriodicalId\":11806,\"journal\":{\"name\":\"e-Polymers\",\"volume\":\"102 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"e-Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/epoly-2023-0065\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/epoly-2023-0065","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

电磁屏蔽织物(EMS)是防止电磁辐射的一种有效方法。然而,目前有关织物结构、电磁波入射方向和电磁波频率对针织物电磁屏蔽性能的机理分析研究并不一致。同时,研究人员关注的重点是提高织物的 EMS 效率,却很少讨论织物的热湿舒适性。因此,本研究采用不锈钢/棉(30/70)混纺纱线编织了一系列纬编织物,分析了电磁波入射方向、针脚、线圈长度和频率对 EMS 效能(EMSE)的影响。同时,选取EMS性能、保暖性能、透气性、透湿性和爆破强力作为评价指标,利用模糊数学对织物的综合性能进行评价。结果表明,各因素对 EMSE 均有不同程度的影响,其中纬向镶嵌针迹兼具功能性和热湿舒适性,在针织面料中具有优异的 EMSE。这些结果有望为 EMS 纬编织物的设计提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comprehensive performance evaluation based on electromagnetic shielding properties of the weft-knitted fabrics made by stainless steel/cotton blended yarn
Electromagnetic shielding (EMS) fabric is an effective way to prevent electromagnetic (EM) radiation. However, the research about mechanism analysis of the fabrics’ structure, EM wave (EMW) incident direction, and EMW frequency on the EMS properties of knitted fabrics is discordant at present. Meanwhile, researchers are focused on improving the EMS efficiency of the fabric but rarely discussed the thermal-wet comfort of the fabric. Therefore, in this study a series of weft-knitted fabrics within stainless steel/cotton (30/70) blended yarns were knitted, and the effects of EMW incident direction, stitches, loop lengths, and frequency on EMS effectiveness (EMSE) were analyzed. Meanwhile, the EMS property, warmth retention property, air permeability, moisture permeability, and bursting strength were selected as the evaluation index to evaluate the comprehensive properties of the fabrics by fuzzy mathematics. The results showed that all factors had different degrees of influence on EMSE, and the weft inlay stitch had both the functionality and thermal-wet comfort, which was excellent EMSE in knitted fabric. These results are expected to provide a reference to the design of EMS weft-knitted fabrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
e-Polymers
e-Polymers 化学-高分子科学
CiteScore
5.90
自引率
10.80%
发文量
64
审稿时长
6.4 months
期刊介绍: e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome. The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.
期刊最新文献
Design, synthesis, and characterization of novel copolymer gel particles for water-plugging applications Influence of 1,1′-Azobis(cyclohexanezonitrile) on the thermo-oxidative aging performance of diolefin elastomers Additive manufacturing (3D printing) technologies for fiber-reinforced polymer composite materials: A review on fabrication methods and process parameters Effect of tannic acid chelating treatment on thermo-oxidative aging property of natural rubber Normal-hexane treatment on PET-based waste fiber depolymerization process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1