{"title":"基于改进的猎人-猎物优化的城市轨道交通列车关键部件可靠性模型","authors":"Jiecheng Zhong, Deqiang He, Zhenzhen Jin, Haimeng Sun, Sheng Shan","doi":"10.1177/1748006x241231067","DOIUrl":null,"url":null,"abstract":"The reliability of key components of urban rail transit (URT) plays an important role in the maintenance plans of URT. It is necessary to establish the reliability model of URT trains. In the current research, the reliability model has a limited scope of application and fails to accurately depict the reliability of key components in URT trains. To solve the above problem, a multi-peak type mixture Weibull distribution model is established using several three-parameter Weibull distributions based on fault modes of components sourced from historical lifetime data. Due to the complexity of this model, parameter estimation is challenging. For this purpose, an improved hunter-prey optimization (IHPO) was proposed to improve parameter estimation accuracy. Firstly, an improved Hénon chaos map was introduced to improve the distribution of the initial population. Secondly, the Lévy flight was introduced to increase the probability of the individual spreading to the whole range at the late stage. Lastly, a nonlinear balance factor was proposed to enhance the algorithm’s global search capability. The simulation experiment was carried out with examples of the balanced pressing wheel and the wheelset. The IHPO algorithm-based parameter estimation method shows the highest R-square with values of 0.996 and 0.999, respectively, and the lowest root mean square error with values of 0.019 and 0.008, respectively. The simulation results demonstrate that the stability and optimization of the HPO are improved, and the multi-peak mixture Weibull distribution model based on the IHPO can accurately depict URT trains’ reliability.","PeriodicalId":51266,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliability model for key components of urban rail transit train based on improved hunter-prey optimization\",\"authors\":\"Jiecheng Zhong, Deqiang He, Zhenzhen Jin, Haimeng Sun, Sheng Shan\",\"doi\":\"10.1177/1748006x241231067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reliability of key components of urban rail transit (URT) plays an important role in the maintenance plans of URT. It is necessary to establish the reliability model of URT trains. In the current research, the reliability model has a limited scope of application and fails to accurately depict the reliability of key components in URT trains. To solve the above problem, a multi-peak type mixture Weibull distribution model is established using several three-parameter Weibull distributions based on fault modes of components sourced from historical lifetime data. Due to the complexity of this model, parameter estimation is challenging. For this purpose, an improved hunter-prey optimization (IHPO) was proposed to improve parameter estimation accuracy. Firstly, an improved Hénon chaos map was introduced to improve the distribution of the initial population. Secondly, the Lévy flight was introduced to increase the probability of the individual spreading to the whole range at the late stage. Lastly, a nonlinear balance factor was proposed to enhance the algorithm’s global search capability. The simulation experiment was carried out with examples of the balanced pressing wheel and the wheelset. The IHPO algorithm-based parameter estimation method shows the highest R-square with values of 0.996 and 0.999, respectively, and the lowest root mean square error with values of 0.019 and 0.008, respectively. The simulation results demonstrate that the stability and optimization of the HPO are improved, and the multi-peak mixture Weibull distribution model based on the IHPO can accurately depict URT trains’ reliability.\",\"PeriodicalId\":51266,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1748006x241231067\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1748006x241231067","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Reliability model for key components of urban rail transit train based on improved hunter-prey optimization
The reliability of key components of urban rail transit (URT) plays an important role in the maintenance plans of URT. It is necessary to establish the reliability model of URT trains. In the current research, the reliability model has a limited scope of application and fails to accurately depict the reliability of key components in URT trains. To solve the above problem, a multi-peak type mixture Weibull distribution model is established using several three-parameter Weibull distributions based on fault modes of components sourced from historical lifetime data. Due to the complexity of this model, parameter estimation is challenging. For this purpose, an improved hunter-prey optimization (IHPO) was proposed to improve parameter estimation accuracy. Firstly, an improved Hénon chaos map was introduced to improve the distribution of the initial population. Secondly, the Lévy flight was introduced to increase the probability of the individual spreading to the whole range at the late stage. Lastly, a nonlinear balance factor was proposed to enhance the algorithm’s global search capability. The simulation experiment was carried out with examples of the balanced pressing wheel and the wheelset. The IHPO algorithm-based parameter estimation method shows the highest R-square with values of 0.996 and 0.999, respectively, and the lowest root mean square error with values of 0.019 and 0.008, respectively. The simulation results demonstrate that the stability and optimization of the HPO are improved, and the multi-peak mixture Weibull distribution model based on the IHPO can accurately depict URT trains’ reliability.
期刊介绍:
The Journal of Risk and Reliability is for researchers and practitioners who are involved in the field of risk analysis and reliability engineering. The remit of the Journal covers concepts, theories, principles, approaches, methods and models for the proper understanding, assessment, characterisation and management of the risk and reliability of engineering systems. The journal welcomes papers which are based on mathematical and probabilistic analysis, simulation and/or optimisation, as well as works highlighting conceptual and managerial issues. Papers that provide perspectives on current practices and methods, and how to improve these, are also welcome