Zhao-ting Shang, Tang-ming Li, Bing-qian Hu, Min Liu, Wang-ting Lu, Fan Yu, Yun Zheng
{"title":"作为整体水分离电催化剂的二维双金属含硒金属有机框架及其煅烧衍生物","authors":"Zhao-ting Shang, Tang-ming Li, Bing-qian Hu, Min Liu, Wang-ting Lu, Fan Yu, Yun Zheng","doi":"10.1007/s11708-024-0924-x","DOIUrl":null,"url":null,"abstract":"<div><p>The use of two-dimensional (2D) layered metal-organic frameworks (MOFs) as self-sacrificial templates has been proven to be a successful method to create high-efficiency Selenium (Se)-containing electrocatalysts for overall water splitting. Herein, two strategies are then utilized to introduce Se element into the Co–Fe MOF, one being the etching of as-prepared MOF by SeO<sub>2</sub> solution, and the other, the replacing of SCN<sup>−</sup> with SeCN<sup>−</sup> as the construction unit. The electrochemical activity of the pristine 2D MOF and their calcinated derivatives for catalyzing the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is evaluated and further discussed. It is found that the effect of introducing Se on improving electrochemical catalytic activity is significant for the HER process. Specifically, the calcinated derivative in the replacing method exhibits an overpotential of 235 mV for HER and 270 mV for OER at a current density of 10 mA/cm<sup>2</sup>. For comparing the two methods of introducing Se element into MOF, similar electrocatalytic activity can be achieved on the their calcinated derivatives. The high electrochemical performance of 2D CoFe-MOF derivatives may be resulted from the unique 2D hierarchical porous structure and strong synergistic effect between different components in the material.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 3","pages":"378 - 389"},"PeriodicalIF":3.1000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting\",\"authors\":\"Zhao-ting Shang, Tang-ming Li, Bing-qian Hu, Min Liu, Wang-ting Lu, Fan Yu, Yun Zheng\",\"doi\":\"10.1007/s11708-024-0924-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The use of two-dimensional (2D) layered metal-organic frameworks (MOFs) as self-sacrificial templates has been proven to be a successful method to create high-efficiency Selenium (Se)-containing electrocatalysts for overall water splitting. Herein, two strategies are then utilized to introduce Se element into the Co–Fe MOF, one being the etching of as-prepared MOF by SeO<sub>2</sub> solution, and the other, the replacing of SCN<sup>−</sup> with SeCN<sup>−</sup> as the construction unit. The electrochemical activity of the pristine 2D MOF and their calcinated derivatives for catalyzing the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is evaluated and further discussed. It is found that the effect of introducing Se on improving electrochemical catalytic activity is significant for the HER process. Specifically, the calcinated derivative in the replacing method exhibits an overpotential of 235 mV for HER and 270 mV for OER at a current density of 10 mA/cm<sup>2</sup>. For comparing the two methods of introducing Se element into MOF, similar electrocatalytic activity can be achieved on the their calcinated derivatives. The high electrochemical performance of 2D CoFe-MOF derivatives may be resulted from the unique 2D hierarchical porous structure and strong synergistic effect between different components in the material.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":570,\"journal\":{\"name\":\"Frontiers in Energy\",\"volume\":\"18 3\",\"pages\":\"378 - 389\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11708-024-0924-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-024-0924-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
使用二维(2D)层状金属有机框架(MOF)作为自牺牲模板已被证明是一种成功的方法,可用于制造高效的含硒(Se)电催化剂,用于整体水分离。本文采用两种策略将硒元素引入 Co-Fe MOF,一种是用 SeO2 溶液蚀刻制备好的 MOF,另一种是用 SeCN- 取代 SCN- 作为构建单元。评估并进一步讨论了原始二维 MOF 及其煅烧衍生物催化氢进化反应(HER)和氧进化反应(OER)的电化学活性。研究发现,引入 Se 对提高 HER 过程的电化学催化活性有显著效果。具体来说,在电流密度为 10 mA/cm2 时,替换法中的煅烧衍生物在 HER 和 OER 反应中分别表现出 235 mV 和 270 mV 的过电位。比较两种在 MOF 中引入 Se 元素的方法,它们的煅烧衍生物可以获得相似的电催化活性。二维 CoFe-MOF 衍生物的高电化学性能可能源于其独特的二维分层多孔结构和材料中不同成分之间的强协同效应。
Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting
The use of two-dimensional (2D) layered metal-organic frameworks (MOFs) as self-sacrificial templates has been proven to be a successful method to create high-efficiency Selenium (Se)-containing electrocatalysts for overall water splitting. Herein, two strategies are then utilized to introduce Se element into the Co–Fe MOF, one being the etching of as-prepared MOF by SeO2 solution, and the other, the replacing of SCN− with SeCN− as the construction unit. The electrochemical activity of the pristine 2D MOF and their calcinated derivatives for catalyzing the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is evaluated and further discussed. It is found that the effect of introducing Se on improving electrochemical catalytic activity is significant for the HER process. Specifically, the calcinated derivative in the replacing method exhibits an overpotential of 235 mV for HER and 270 mV for OER at a current density of 10 mA/cm2. For comparing the two methods of introducing Se element into MOF, similar electrocatalytic activity can be achieved on the their calcinated derivatives. The high electrochemical performance of 2D CoFe-MOF derivatives may be resulted from the unique 2D hierarchical porous structure and strong synergistic effect between different components in the material.
期刊介绍:
Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy.
Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues.
Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research.
High-quality papers are solicited in, but are not limited to the following areas:
-Fundamental energy science
-Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency
-Energy and the environment, including pollution control, energy efficiency and climate change
-Energy economics, strategy and policy
-Emerging energy issue