Je Shik Nam, Hyun-Ah Kim, Tae-Jin Kwak, Kang Hee Cho, Il-Young Jung, Chang-Won Moon
{"title":"基于移动健康应用程序的家庭有氧运动对健康年轻人身体表现的可行性。","authors":"Je Shik Nam, Hyun-Ah Kim, Tae-Jin Kwak, Kang Hee Cho, Il-Young Jung, Chang-Won Moon","doi":"10.5535/arm.230023","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To investigate the feasibility and effects of a mobile app-based home cycling exercise program compared to home cycling exercise without additional monitoring system. Compared with fitness facilities or outdoor exercise, home-based exercise programs effectively improve physical performance in an indwelling community. However, a flexible, informal environment may decrease motivation and impair adherence to physical exercise. Mobile devices for aerobic exercise and mobile applications provide real-time monitoring, immediate feedback, and encouragement to increase motivation and promote physical performance. We investigated the feasibility and effects of a mobile app-based home exercise program on body composition, muscular strength, and cardiopulmonary function.</p><p><strong>Methods: </strong>Between February and May 2023, 20 participants were randomly allocated to the intervention (mobile application with a tablet) and control groups, and they performed aerobic exercise using a stationary bicycle for ≥150 minutes per week for 6 weeks (≤30-minute exercise session, with 3-minute warm-up and 3-minute cool-down). Karvonen formula-based heartrate defined the weekly increase in exercise intensity. Outcome measures included body-composition parameters, isokinetic knee flexor and extensor strength tests, cardiopulmonary exercise test results, and rate of target heart rate (HR) achievement. Participants were assessed at baseline and after the intervention.</p><p><strong>Results: </strong>Unrelated personal events led two participants to drop out. The intervention and control groups had similar baseline characteristics. Compared with the control group, in the post-intervention isokinetic strength test, bilateral knee flexor and extensor power, and time to target HR achievement significantly increased each week in the intervention group.</p><p><strong>Conclusion: </strong>Home-based exercise to achieve long-term cardiovascular fitness with portable electronic/mobile devices facilitates individualized exercise using real-time feedback to improve motivation and adherence.</p>","PeriodicalId":47738,"journal":{"name":"Annals of Rehabilitation Medicine-ARM","volume":"48 1","pages":"75-85"},"PeriodicalIF":2.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10915298/pdf/","citationCount":"0","resultStr":"{\"title\":\"Feasibility of Mobile Health App-Based Home Aerobic Exercise for Physical Performance in Healthy Young Adults.\",\"authors\":\"Je Shik Nam, Hyun-Ah Kim, Tae-Jin Kwak, Kang Hee Cho, Il-Young Jung, Chang-Won Moon\",\"doi\":\"10.5535/arm.230023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To investigate the feasibility and effects of a mobile app-based home cycling exercise program compared to home cycling exercise without additional monitoring system. Compared with fitness facilities or outdoor exercise, home-based exercise programs effectively improve physical performance in an indwelling community. However, a flexible, informal environment may decrease motivation and impair adherence to physical exercise. Mobile devices for aerobic exercise and mobile applications provide real-time monitoring, immediate feedback, and encouragement to increase motivation and promote physical performance. We investigated the feasibility and effects of a mobile app-based home exercise program on body composition, muscular strength, and cardiopulmonary function.</p><p><strong>Methods: </strong>Between February and May 2023, 20 participants were randomly allocated to the intervention (mobile application with a tablet) and control groups, and they performed aerobic exercise using a stationary bicycle for ≥150 minutes per week for 6 weeks (≤30-minute exercise session, with 3-minute warm-up and 3-minute cool-down). Karvonen formula-based heartrate defined the weekly increase in exercise intensity. Outcome measures included body-composition parameters, isokinetic knee flexor and extensor strength tests, cardiopulmonary exercise test results, and rate of target heart rate (HR) achievement. Participants were assessed at baseline and after the intervention.</p><p><strong>Results: </strong>Unrelated personal events led two participants to drop out. The intervention and control groups had similar baseline characteristics. Compared with the control group, in the post-intervention isokinetic strength test, bilateral knee flexor and extensor power, and time to target HR achievement significantly increased each week in the intervention group.</p><p><strong>Conclusion: </strong>Home-based exercise to achieve long-term cardiovascular fitness with portable electronic/mobile devices facilitates individualized exercise using real-time feedback to improve motivation and adherence.</p>\",\"PeriodicalId\":47738,\"journal\":{\"name\":\"Annals of Rehabilitation Medicine-ARM\",\"volume\":\"48 1\",\"pages\":\"75-85\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10915298/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Rehabilitation Medicine-ARM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5535/arm.230023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"REHABILITATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Rehabilitation Medicine-ARM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5535/arm.230023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"REHABILITATION","Score":null,"Total":0}
Feasibility of Mobile Health App-Based Home Aerobic Exercise for Physical Performance in Healthy Young Adults.
Objective: To investigate the feasibility and effects of a mobile app-based home cycling exercise program compared to home cycling exercise without additional monitoring system. Compared with fitness facilities or outdoor exercise, home-based exercise programs effectively improve physical performance in an indwelling community. However, a flexible, informal environment may decrease motivation and impair adherence to physical exercise. Mobile devices for aerobic exercise and mobile applications provide real-time monitoring, immediate feedback, and encouragement to increase motivation and promote physical performance. We investigated the feasibility and effects of a mobile app-based home exercise program on body composition, muscular strength, and cardiopulmonary function.
Methods: Between February and May 2023, 20 participants were randomly allocated to the intervention (mobile application with a tablet) and control groups, and they performed aerobic exercise using a stationary bicycle for ≥150 minutes per week for 6 weeks (≤30-minute exercise session, with 3-minute warm-up and 3-minute cool-down). Karvonen formula-based heartrate defined the weekly increase in exercise intensity. Outcome measures included body-composition parameters, isokinetic knee flexor and extensor strength tests, cardiopulmonary exercise test results, and rate of target heart rate (HR) achievement. Participants were assessed at baseline and after the intervention.
Results: Unrelated personal events led two participants to drop out. The intervention and control groups had similar baseline characteristics. Compared with the control group, in the post-intervention isokinetic strength test, bilateral knee flexor and extensor power, and time to target HR achievement significantly increased each week in the intervention group.
Conclusion: Home-based exercise to achieve long-term cardiovascular fitness with portable electronic/mobile devices facilitates individualized exercise using real-time feedback to improve motivation and adherence.