用于实验中复制的非平稳时间序列的 anopow。

IF 1.3 4区 数学 Q2 STATISTICS & PROBABILITY Annals of Applied Statistics Pub Date : 2024-03-01 Epub Date: 2024-01-31 DOI:10.1214/23-aoas1791
Zeda Li, Yu Ryan Yue, Scott A Bruce
{"title":"用于实验中复制的非平稳时间序列的 anopow。","authors":"Zeda Li, Yu Ryan Yue, Scott A Bruce","doi":"10.1214/23-aoas1791","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a novel analysis of power (ANOPOW) model for analyzing replicated nonstationary time series commonly encountered in experimental studies. Based on a locally stationary ANOPOW Cramér spectral representation, the proposed model can be used to compare the second-order time-varying frequency patterns among different groups of time series and to estimate group effects as functions of both time and frequency. Formulated in a Bayesian framework, independent two-dimensional second-order random walk (RW2D) priors are assumed on each of the time-varying functional effects for flexible and adaptive smoothing. A piecewise stationary approximation of the nonstationary time series is used to obtain localized estimates of time-varying spectra. Posterior distributions of the time-varying functional group effects are then obtained via integrated nested Laplace approximations (INLA) at a low computational cost. The large-sample distribution of local periodograms can be appropriately utilized to improve estimation accuracy since INLA allows modeling of data with various types of distributions. The usefulness of the proposed model is illustrated through two real data applications: analyses of seismic signals and pupil diameter time series in children with attention deficit hyperactivity disorder. Simulation studies, Supplementary Materials (Li, Yue and Bruce, 2023a), and R code (Li, Yue and Bruce, 2023b) for this article are also available.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"18 1","pages":"328-349"},"PeriodicalIF":1.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10906746/pdf/","citationCount":"0","resultStr":"{\"title\":\"ANOPOW FOR REPLICATED NONSTATIONARY TIME SERIES IN EXPERIMENTS.\",\"authors\":\"Zeda Li, Yu Ryan Yue, Scott A Bruce\",\"doi\":\"10.1214/23-aoas1791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a novel analysis of power (ANOPOW) model for analyzing replicated nonstationary time series commonly encountered in experimental studies. Based on a locally stationary ANOPOW Cramér spectral representation, the proposed model can be used to compare the second-order time-varying frequency patterns among different groups of time series and to estimate group effects as functions of both time and frequency. Formulated in a Bayesian framework, independent two-dimensional second-order random walk (RW2D) priors are assumed on each of the time-varying functional effects for flexible and adaptive smoothing. A piecewise stationary approximation of the nonstationary time series is used to obtain localized estimates of time-varying spectra. Posterior distributions of the time-varying functional group effects are then obtained via integrated nested Laplace approximations (INLA) at a low computational cost. The large-sample distribution of local periodograms can be appropriately utilized to improve estimation accuracy since INLA allows modeling of data with various types of distributions. The usefulness of the proposed model is illustrated through two real data applications: analyses of seismic signals and pupil diameter time series in children with attention deficit hyperactivity disorder. Simulation studies, Supplementary Materials (Li, Yue and Bruce, 2023a), and R code (Li, Yue and Bruce, 2023b) for this article are also available.</p>\",\"PeriodicalId\":50772,\"journal\":{\"name\":\"Annals of Applied Statistics\",\"volume\":\"18 1\",\"pages\":\"328-349\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10906746/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-aoas1791\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-aoas1791","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新颖的功率分析(ANOPOW)模型,用于分析实验研究中常见的重复非平稳时间序列。基于局部静止的 ANOPOW Cramér 频谱表示,所提出的模型可用于比较不同时间序列组间的二阶时变频率模式,并估算作为时间和频率函数的组效应。在贝叶斯框架下,假设每个时变函数效应都有独立的二维二阶随机游走(RW2D)先验,以实现灵活的自适应平滑。非平稳时间序列的片断平稳近似用于获得时变频谱的局部估计值。然后,通过集成嵌套拉普拉斯近似(INLA),以较低的计算成本获得时变功能组效应的后验分布。由于 INLA 可以对各种类型分布的数据建模,因此可以适当利用局部周期图的大样本分布来提高估计精度。本文通过两个实际数据应用说明了所提模型的实用性:地震信号分析和注意力缺陷多动障碍儿童的瞳孔直径时间序列分析。本文的仿真研究、补充材料(Li, Yue and Bruce, 2023a)和 R 代码(Li, Yue and Bruce, 2023b)也已发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ANOPOW FOR REPLICATED NONSTATIONARY TIME SERIES IN EXPERIMENTS.

We propose a novel analysis of power (ANOPOW) model for analyzing replicated nonstationary time series commonly encountered in experimental studies. Based on a locally stationary ANOPOW Cramér spectral representation, the proposed model can be used to compare the second-order time-varying frequency patterns among different groups of time series and to estimate group effects as functions of both time and frequency. Formulated in a Bayesian framework, independent two-dimensional second-order random walk (RW2D) priors are assumed on each of the time-varying functional effects for flexible and adaptive smoothing. A piecewise stationary approximation of the nonstationary time series is used to obtain localized estimates of time-varying spectra. Posterior distributions of the time-varying functional group effects are then obtained via integrated nested Laplace approximations (INLA) at a low computational cost. The large-sample distribution of local periodograms can be appropriately utilized to improve estimation accuracy since INLA allows modeling of data with various types of distributions. The usefulness of the proposed model is illustrated through two real data applications: analyses of seismic signals and pupil diameter time series in children with attention deficit hyperactivity disorder. Simulation studies, Supplementary Materials (Li, Yue and Bruce, 2023a), and R code (Li, Yue and Bruce, 2023b) for this article are also available.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Statistics
Annals of Applied Statistics 社会科学-统计学与概率论
CiteScore
3.10
自引率
5.60%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.
期刊最新文献
PATIENT RECRUITMENT USING ELECTRONIC HEALTH RECORDS UNDER SELECTION BIAS: A TWO-PHASE SAMPLING FRAMEWORK. A NONPARAMETRIC MIXED-EFFECTS MIXTURE MODEL FOR PATTERNS OF CLINICAL MEASUREMENTS ASSOCIATED WITH COVID-19. A bootstrap model comparison test for identifying genes with context-specific patterns of genetic regulation. BIVARIATE FUNCTIONAL PATTERNS OF LIFETIME MEDICARE COSTS AMONG ESRD PATIENTS. EXPOSURE EFFECTS ON COUNT OUTCOMES WITH OBSERVATIONAL DATA, WITH APPLICATION TO INCARCERATED WOMEN.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1