SAW:立体测序空间转录组学高效准确的数据分析工作流程。

GigaByte (Hong Kong, China) Pub Date : 2024-02-20 eCollection Date: 2024-01-01 DOI:10.46471/gigabyte.111
Chun Gong, Shengkang Li, Leying Wang, Fuxiang Zhao, Shuangsang Fang, Dong Yuan, Zijian Zhao, Qiqi He, Mei Li, Weiqing Liu, Zhaoxun Li, Hongqing Xie, Sha Liao, Ao Chen, Yong Zhang, Yuxiang Li, Xun Xu
{"title":"SAW:立体测序空间转录组学高效准确的数据分析工作流程。","authors":"Chun Gong, Shengkang Li, Leying Wang, Fuxiang Zhao, Shuangsang Fang, Dong Yuan, Zijian Zhao, Qiqi He, Mei Li, Weiqing Liu, Zhaoxun Li, Hongqing Xie, Sha Liao, Ao Chen, Yong Zhang, Yuxiang Li, Xun Xu","doi":"10.46471/gigabyte.111","DOIUrl":null,"url":null,"abstract":"<p><p>The basic analysis steps of spatial transcriptomics require obtaining gene expression information from both space and cells. The existing tools for these analyses incur performance issues when dealing with large datasets. These issues involve computationally intensive spatial localization, RNA genome alignment, and excessive memory usage in large chip scenarios. These problems affect the applicability and efficiency of the analysis. Here, a high-performance and accurate spatial transcriptomics data analysis workflow, called Stereo-seq Analysis Workflow (SAW), was developed for the Stereo-seq technology developed at BGI. SAW includes mRNA spatial position reconstruction, genome alignment, gene expression matrix generation, and clustering. The workflow outputs files in a universal format for subsequent personalized analysis. The execution time for the entire analysis is ∼148 min with 1 GB reads 1 × 1 cm chip test data, 1.8 times faster than with an unoptimized workflow.</p>","PeriodicalId":73157,"journal":{"name":"GigaByte (Hong Kong, China)","volume":"2024 ","pages":"gigabyte111"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905255/pdf/","citationCount":"0","resultStr":"{\"title\":\"SAW: an efficient and accurate data analysis workflow for Stereo-seq spatial transcriptomics.\",\"authors\":\"Chun Gong, Shengkang Li, Leying Wang, Fuxiang Zhao, Shuangsang Fang, Dong Yuan, Zijian Zhao, Qiqi He, Mei Li, Weiqing Liu, Zhaoxun Li, Hongqing Xie, Sha Liao, Ao Chen, Yong Zhang, Yuxiang Li, Xun Xu\",\"doi\":\"10.46471/gigabyte.111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The basic analysis steps of spatial transcriptomics require obtaining gene expression information from both space and cells. The existing tools for these analyses incur performance issues when dealing with large datasets. These issues involve computationally intensive spatial localization, RNA genome alignment, and excessive memory usage in large chip scenarios. These problems affect the applicability and efficiency of the analysis. Here, a high-performance and accurate spatial transcriptomics data analysis workflow, called Stereo-seq Analysis Workflow (SAW), was developed for the Stereo-seq technology developed at BGI. SAW includes mRNA spatial position reconstruction, genome alignment, gene expression matrix generation, and clustering. The workflow outputs files in a universal format for subsequent personalized analysis. The execution time for the entire analysis is ∼148 min with 1 GB reads 1 × 1 cm chip test data, 1.8 times faster than with an unoptimized workflow.</p>\",\"PeriodicalId\":73157,\"journal\":{\"name\":\"GigaByte (Hong Kong, China)\",\"volume\":\"2024 \",\"pages\":\"gigabyte111\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905255/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaByte (Hong Kong, China)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46471/gigabyte.111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaByte (Hong Kong, China)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46471/gigabyte.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

空间转录组学的基本分析步骤需要从空间和细胞两方面获取基因表达信息。现有的这些分析工具在处理大型数据集时存在性能问题。这些问题涉及计算密集型空间定位、RNA 基因组比对、大型芯片情况下内存使用过多等。这些问题影响了分析的适用性和效率。在此,我们针对 BGI 开发的 Stereo-seq 技术,开发了一种高性能、高精度的空间转录组学数据分析工作流,称为 Stereo-seq 分析工作流(SAW)。SAW 包括 mRNA 空间位置重建、基因组比对、基因表达矩阵生成和聚类。工作流程以通用格式输出文件,供后续个性化分析使用。在 1 GB 读数 1 × 1 厘米芯片测试数据下,整个分析的执行时间为 148 分钟,比未优化的工作流程快 1.8 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SAW: an efficient and accurate data analysis workflow for Stereo-seq spatial transcriptomics.

The basic analysis steps of spatial transcriptomics require obtaining gene expression information from both space and cells. The existing tools for these analyses incur performance issues when dealing with large datasets. These issues involve computationally intensive spatial localization, RNA genome alignment, and excessive memory usage in large chip scenarios. These problems affect the applicability and efficiency of the analysis. Here, a high-performance and accurate spatial transcriptomics data analysis workflow, called Stereo-seq Analysis Workflow (SAW), was developed for the Stereo-seq technology developed at BGI. SAW includes mRNA spatial position reconstruction, genome alignment, gene expression matrix generation, and clustering. The workflow outputs files in a universal format for subsequent personalized analysis. The execution time for the entire analysis is ∼148 min with 1 GB reads 1 × 1 cm chip test data, 1.8 times faster than with an unoptimized workflow.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
5 weeks
期刊最新文献
The genome of the sapphire damselfish Chrysiptera cyanea: a new resource to support further investigation of the evolution of Pomacentrids. Polyploid genome assembly of Cardamine chenopodiifolia. NeuroVar: an open-source tool for the visualization of gene expression and variation data for biomarkers of neurological diseases. Whole-genome re-sequencing of the Baikal seal and other phocid seals for a glimpse into their genetic diversity, demographic history, and phylogeny. Chromosome-level genome assembly and annotation of the crested gecko, Correlophus ciliatus, a lizard incapable of tail regeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1