SPAGHETTI:科维德之后电动汽车使用的合成数据生成器

Q2 Energy Energy Informatics Pub Date : 2024-03-04 DOI:10.1186/s42162-024-00314-6
Anaïs Berkes, Srinivasan Keshav
{"title":"SPAGHETTI:科维德之后电动汽车使用的合成数据生成器","authors":"Anaïs Berkes,&nbsp;Srinivasan Keshav","doi":"10.1186/s42162-024-00314-6","DOIUrl":null,"url":null,"abstract":"<div><p>The Covid-19 pandemic has resulted in a permanent shift in individuals’ daily routines and driving behaviours, leading to an increase in remote work. There has also been an independent and parallel rise in the adoption of solar photovoltaic (PV) panels, electrical storage systems, and electric vehicles (EVs). With remote work, EVs are spending longer periods at home. This offers a chance to reduce EV charging demands on the grid by directly charging EV batteries with solar energy during daylight. Additionally, if bidirectional charging is supported, EVs can serve as a backup energy source day and night. Such an approach fundamentally alters domestic load profiles and boosts the profitability of residential power systems. However, the lack of publicly available post-Covid EV usage datasets has made it difficult to study the impact of recent commuting patterns shifts on EV charging. This paper, therefore, presents SPAGHETTI (Synthetic Patterns &amp; Activity Generator for Home-Energy &amp; Tomorrow’s Transportation Investigation), a tool that can be used for the synthetic generation of realistic EV drive cycles. It takes as input EV user commuting patterns, allowing for personalised modeling of EV usage. It is based on a thorough literature survey on post-Covid work-from-home (WFH) patterns. SPAGHETTI can be used by the scientific community to conduct further research on the large-scale adoption of EVs and their integration into domestic microgrids. As an example of its utility, we study the dependence of EV charge state and EV charging distributions on the degree of working from home and find that there is, indeed, a significant impact of WFH patterns on these critical parameters.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00314-6","citationCount":"0","resultStr":"{\"title\":\"SPAGHETTI: a synthetic data generator for post-Covid electric vehicle usage\",\"authors\":\"Anaïs Berkes,&nbsp;Srinivasan Keshav\",\"doi\":\"10.1186/s42162-024-00314-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Covid-19 pandemic has resulted in a permanent shift in individuals’ daily routines and driving behaviours, leading to an increase in remote work. There has also been an independent and parallel rise in the adoption of solar photovoltaic (PV) panels, electrical storage systems, and electric vehicles (EVs). With remote work, EVs are spending longer periods at home. This offers a chance to reduce EV charging demands on the grid by directly charging EV batteries with solar energy during daylight. Additionally, if bidirectional charging is supported, EVs can serve as a backup energy source day and night. Such an approach fundamentally alters domestic load profiles and boosts the profitability of residential power systems. However, the lack of publicly available post-Covid EV usage datasets has made it difficult to study the impact of recent commuting patterns shifts on EV charging. This paper, therefore, presents SPAGHETTI (Synthetic Patterns &amp; Activity Generator for Home-Energy &amp; Tomorrow’s Transportation Investigation), a tool that can be used for the synthetic generation of realistic EV drive cycles. It takes as input EV user commuting patterns, allowing for personalised modeling of EV usage. It is based on a thorough literature survey on post-Covid work-from-home (WFH) patterns. SPAGHETTI can be used by the scientific community to conduct further research on the large-scale adoption of EVs and their integration into domestic microgrids. As an example of its utility, we study the dependence of EV charge state and EV charging distributions on the degree of working from home and find that there is, indeed, a significant impact of WFH patterns on these critical parameters.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00314-6\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-024-00314-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00314-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

Covid-19 大流行导致人们的日常作息和驾驶行为发生永久性转变,从而导致远程工作的增加。同时,太阳能光伏(PV)板、蓄电系统和电动汽车(EV)的采用率也出现了独立和平行的增长。随着远程工作的增加,电动汽车在家的时间也越来越长。这就提供了一个机会,在白天直接用太阳能为电动汽车电池充电,从而减少电动汽车对电网的充电需求。此外,如果支持双向充电,电动汽车还可以作为后备能源日夜使用。这种方法从根本上改变了家庭负荷状况,提高了住宅电力系统的盈利能力。然而,由于缺乏可公开获得的科维德事件后电动汽车使用数据集,因此很难研究近期通勤模式转变对电动汽车充电的影响。因此,本文介绍了 SPAGHETTI(用于家庭能源和未来交通调查的合成模式和活动生成器),这是一种可用于合成生成现实电动汽车驱动周期的工具。它将电动汽车用户的通勤模式作为输入,可对电动汽车的使用进行个性化建模。该工具基于对科维德事件后在家办公(WFH)模式的全面文献调查。科学界可利用 SPAGHETTI 进一步研究电动汽车的大规模应用及其与家用微电网的整合。作为其实用性的一个例子,我们研究了电动汽车充电状态和电动汽车充电分布对在家工作程度的依赖性,发现在家工作模式确实对这些关键参数有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SPAGHETTI: a synthetic data generator for post-Covid electric vehicle usage

The Covid-19 pandemic has resulted in a permanent shift in individuals’ daily routines and driving behaviours, leading to an increase in remote work. There has also been an independent and parallel rise in the adoption of solar photovoltaic (PV) panels, electrical storage systems, and electric vehicles (EVs). With remote work, EVs are spending longer periods at home. This offers a chance to reduce EV charging demands on the grid by directly charging EV batteries with solar energy during daylight. Additionally, if bidirectional charging is supported, EVs can serve as a backup energy source day and night. Such an approach fundamentally alters domestic load profiles and boosts the profitability of residential power systems. However, the lack of publicly available post-Covid EV usage datasets has made it difficult to study the impact of recent commuting patterns shifts on EV charging. This paper, therefore, presents SPAGHETTI (Synthetic Patterns & Activity Generator for Home-Energy & Tomorrow’s Transportation Investigation), a tool that can be used for the synthetic generation of realistic EV drive cycles. It takes as input EV user commuting patterns, allowing for personalised modeling of EV usage. It is based on a thorough literature survey on post-Covid work-from-home (WFH) patterns. SPAGHETTI can be used by the scientific community to conduct further research on the large-scale adoption of EVs and their integration into domestic microgrids. As an example of its utility, we study the dependence of EV charge state and EV charging distributions on the degree of working from home and find that there is, indeed, a significant impact of WFH patterns on these critical parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
期刊最新文献
Countermeasures to promote sustainable construction and coordinated development of healthy cities: a case study of Dandong City Calibration of flow differential pressure coefficients on pump-turbine by thermodynamic method Optimization configuration strategy for regional energy systems based on multiple uncertainties and demand response Energy management controllers: strategies, coordination, and applications Application research of UAV infrared diagnosis technology in intelligent inspection of substations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1