基于多通道电极的电阻率层析成像技术

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Applied Geophysics Pub Date : 2024-03-04 DOI:10.1007/s11770-024-1059-x
{"title":"基于多通道电极的电阻率层析成像技术","authors":"","doi":"10.1007/s11770-024-1059-x","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>With the constantly changing engineering construction sector, the detection accuracy of conventional electrical resistivity tomography (ERT) is no longer sufficient. A multichannel electrode design (MERT)-based ERT is introduced in this paper to address the growing need for resolution. The imaging accuracy of the ERT method is improved through the collection of apparent resistivity data in various directions by measuring the potential difference between different channels. Numerical simulation results of the inclined high-resistivity anomaly model reveal that MERT is a precise representation of the shape, inclined direction, and buried depth of the anomaly, with thoroughfare M<sub>2</sub>N<sub>2</sub> producing the most precise forward and inverse results. Based on the analysis results of the model resolution matrix, when the buried depth of power supply points and the gap between potential acquisition points are 30%–90% and 30%–60% of the electrode distance, respectively, the MERT approach yields superior detection outcomes. The detection effect of the MERT method on anomalous bodies with different burial depths under the optimal parameters also indicates that the MERT method can obtain richer potential change information with higher resolution in deep areas compared to the ERT method. With the implementation of the MERT approach, the scope of applications for ERT is expanded, the accuracy of ERT detection is increased, and the progress of near-surface fine detection is positively influenced.</p>","PeriodicalId":55500,"journal":{"name":"Applied Geophysics","volume":"12 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resistivity tomography based on multichannel electrodes\",\"authors\":\"\",\"doi\":\"10.1007/s11770-024-1059-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>With the constantly changing engineering construction sector, the detection accuracy of conventional electrical resistivity tomography (ERT) is no longer sufficient. A multichannel electrode design (MERT)-based ERT is introduced in this paper to address the growing need for resolution. The imaging accuracy of the ERT method is improved through the collection of apparent resistivity data in various directions by measuring the potential difference between different channels. Numerical simulation results of the inclined high-resistivity anomaly model reveal that MERT is a precise representation of the shape, inclined direction, and buried depth of the anomaly, with thoroughfare M<sub>2</sub>N<sub>2</sub> producing the most precise forward and inverse results. Based on the analysis results of the model resolution matrix, when the buried depth of power supply points and the gap between potential acquisition points are 30%–90% and 30%–60% of the electrode distance, respectively, the MERT approach yields superior detection outcomes. The detection effect of the MERT method on anomalous bodies with different burial depths under the optimal parameters also indicates that the MERT method can obtain richer potential change information with higher resolution in deep areas compared to the ERT method. With the implementation of the MERT approach, the scope of applications for ERT is expanded, the accuracy of ERT detection is increased, and the progress of near-surface fine detection is positively influenced.</p>\",\"PeriodicalId\":55500,\"journal\":{\"name\":\"Applied Geophysics\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11770-024-1059-x\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11770-024-1059-x","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 随着工程建设领域的不断变化,传统电阻率层析成像(ERT)的探测精度已不再足够。本文介绍了一种基于多通道电极设计(MERT)的电阻率层析成像技术,以满足日益增长的分辨率需求。通过测量不同通道之间的电位差,收集不同方向的视电阻率数据,提高了 ERT 方法的成像精度。倾斜高电阻率异常模型的数值模拟结果表明,MERT 可以精确地表示异常的形状、倾斜方向和埋藏深度,其中通路 M2N2 得出的正演和反演结果最为精确。根据模型分辨率矩阵的分析结果,当电源点的埋深和电位采集点之间的间隙分别为电极距离的 30%-90%和 30%-60%时,MERT 方法的检测效果更优。在最优参数下,MERT 方法对不同埋深异常体的探测效果也表明,与 ERT 方法相比,MERT 方法在深部区域可以获得更丰富的电位变化信息,分辨率更高。MERT方法的应用,扩大了ERT的应用范围,提高了ERT的探测精度,对近地表精细探测的进展产生了积极影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resistivity tomography based on multichannel electrodes

Abstract

With the constantly changing engineering construction sector, the detection accuracy of conventional electrical resistivity tomography (ERT) is no longer sufficient. A multichannel electrode design (MERT)-based ERT is introduced in this paper to address the growing need for resolution. The imaging accuracy of the ERT method is improved through the collection of apparent resistivity data in various directions by measuring the potential difference between different channels. Numerical simulation results of the inclined high-resistivity anomaly model reveal that MERT is a precise representation of the shape, inclined direction, and buried depth of the anomaly, with thoroughfare M2N2 producing the most precise forward and inverse results. Based on the analysis results of the model resolution matrix, when the buried depth of power supply points and the gap between potential acquisition points are 30%–90% and 30%–60% of the electrode distance, respectively, the MERT approach yields superior detection outcomes. The detection effect of the MERT method on anomalous bodies with different burial depths under the optimal parameters also indicates that the MERT method can obtain richer potential change information with higher resolution in deep areas compared to the ERT method. With the implementation of the MERT approach, the scope of applications for ERT is expanded, the accuracy of ERT detection is increased, and the progress of near-surface fine detection is positively influenced.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Geophysics
Applied Geophysics 地学-地球化学与地球物理
CiteScore
1.50
自引率
14.30%
发文量
912
审稿时长
2 months
期刊介绍: The journal is designed to provide an academic realm for a broad blend of academic and industry papers to promote rapid communication and exchange of ideas between Chinese and world-wide geophysicists. The publication covers the applications of geoscience, geophysics, and related disciplines in the fields of energy, resources, environment, disaster, engineering, information, military, and surveying.
期刊最新文献
Earthquake detection probabilities and completeness magnitude in the northern margin of the Ordos Block Multi-well wavelet-synchronized inversion based on particle swarm optimization Low-Frequency Sweep Design—A Case Study in Middle East Desert Environments Research on Paleoearthquake and Recurrence Characteristics of Strong Earthquakes in Active Faults of Mainland China Capacity matching and optimization of solar-ground source heat pump coupling systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1