用于多跳通信网络的新型压缩线性网络编码向量

IF 1.7 4区 计算机科学 Q3 TELECOMMUNICATIONS Telecommunication Systems Pub Date : 2024-03-04 DOI:10.1007/s11235-024-01110-z
Anas A. Abudaqa, Ashraf S. H. Mahmoud, Alawi A. ALsaggaf, Tarek R. Sheltami
{"title":"用于多跳通信网络的新型压缩线性网络编码向量","authors":"Anas A. Abudaqa, Ashraf S. H. Mahmoud, Alawi A. ALsaggaf, Tarek R. Sheltami","doi":"10.1007/s11235-024-01110-z","DOIUrl":null,"url":null,"abstract":"<p>Random Linear Network Coding (RLNC) is well-known to provide high throughput and low latency for vast communication networks. However, RLNC often suffers from high coefficients overhead, specifically, when it’s applied to limited resource or short-packet networks. Herein, the problem of RLNC coefficients vector overhead is revisited. A novel framework, based on modular arithmetic and prime numbers, and influenced by the Chinese remainder theorem (CRT), is proposed to reduce the coefficients overhead by augmenting only a tiny one item coefficient instead of the entire coefficients vector. The proposed method successfully addresses all the shortcomings of previous methods, including restrictions on generation size and packet density, recoding on intermediate nodes, and creating innovative coding vectors. Theoretical analysis and experimental demonstrate the superior performance of the proposed scheme in terms of coefficients overhead ratio, download time, throughput, and packet drop rate. This evaluation has considered two types of networks: wireless sensors network for Internet of things, and conventional wireline Ethernet.</p>","PeriodicalId":51194,"journal":{"name":"Telecommunication Systems","volume":"3 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel compressed linear network coding vectors for multihop communication networks\",\"authors\":\"Anas A. Abudaqa, Ashraf S. H. Mahmoud, Alawi A. ALsaggaf, Tarek R. Sheltami\",\"doi\":\"10.1007/s11235-024-01110-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Random Linear Network Coding (RLNC) is well-known to provide high throughput and low latency for vast communication networks. However, RLNC often suffers from high coefficients overhead, specifically, when it’s applied to limited resource or short-packet networks. Herein, the problem of RLNC coefficients vector overhead is revisited. A novel framework, based on modular arithmetic and prime numbers, and influenced by the Chinese remainder theorem (CRT), is proposed to reduce the coefficients overhead by augmenting only a tiny one item coefficient instead of the entire coefficients vector. The proposed method successfully addresses all the shortcomings of previous methods, including restrictions on generation size and packet density, recoding on intermediate nodes, and creating innovative coding vectors. Theoretical analysis and experimental demonstrate the superior performance of the proposed scheme in terms of coefficients overhead ratio, download time, throughput, and packet drop rate. This evaluation has considered two types of networks: wireless sensors network for Internet of things, and conventional wireline Ethernet.</p>\",\"PeriodicalId\":51194,\"journal\":{\"name\":\"Telecommunication Systems\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Telecommunication Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11235-024-01110-z\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telecommunication Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11235-024-01110-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,随机线性网络编码(RLNC)可为庞大的通信网络提供高吞吐量和低延迟。然而,RLNC 常常受到高系数开销的困扰,特别是当它应用于资源有限或短数据包网络时。本文重新探讨了 RLNC 的系数向量开销问题。基于模块化算术和素数,并受中国余数定理(CRT)的影响,提出了一种新颖的框架,通过只增加很小的一项系数而不是整个系数向量来减少系数开销。所提出的方法成功地解决了以往方法的所有缺点,包括对生成大小和数据包密度的限制、中间节点的重新编码以及创建创新的编码向量。理论分析和实验证明了所提方案在系数开销比、下载时间、吞吐量和数据包丢包率方面的优越性能。该评估考虑了两种类型的网络:物联网无线传感器网络和传统有线以太网。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel compressed linear network coding vectors for multihop communication networks

Random Linear Network Coding (RLNC) is well-known to provide high throughput and low latency for vast communication networks. However, RLNC often suffers from high coefficients overhead, specifically, when it’s applied to limited resource or short-packet networks. Herein, the problem of RLNC coefficients vector overhead is revisited. A novel framework, based on modular arithmetic and prime numbers, and influenced by the Chinese remainder theorem (CRT), is proposed to reduce the coefficients overhead by augmenting only a tiny one item coefficient instead of the entire coefficients vector. The proposed method successfully addresses all the shortcomings of previous methods, including restrictions on generation size and packet density, recoding on intermediate nodes, and creating innovative coding vectors. Theoretical analysis and experimental demonstrate the superior performance of the proposed scheme in terms of coefficients overhead ratio, download time, throughput, and packet drop rate. This evaluation has considered two types of networks: wireless sensors network for Internet of things, and conventional wireline Ethernet.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Telecommunication Systems
Telecommunication Systems 工程技术-电信学
CiteScore
5.40
自引率
8.00%
发文量
105
审稿时长
6.0 months
期刊介绍: Telecommunication Systems is a journal covering all aspects of modeling, analysis, design and management of telecommunication systems. The journal publishes high quality articles dealing with the use of analytic and quantitative tools for the modeling, analysis, design and management of telecommunication systems covering: Performance Evaluation of Wide Area and Local Networks; Network Interconnection; Wire, wireless, Adhoc, mobile networks; Impact of New Services (economic and organizational impact); Fiberoptics and photonic switching; DSL, ADSL, cable TV and their impact; Design and Analysis Issues in Metropolitan Area Networks; Networking Protocols; Dynamics and Capacity Expansion of Telecommunication Systems; Multimedia Based Systems, Their Design Configuration and Impact; Configuration of Distributed Systems; Pricing for Networking and Telecommunication Services; Performance Analysis of Local Area Networks; Distributed Group Decision Support Systems; Configuring Telecommunication Systems with Reliability and Availability; Cost Benefit Analysis and Economic Impact of Telecommunication Systems; Standardization and Regulatory Issues; Security, Privacy and Encryption in Telecommunication Systems; Cellular, Mobile and Satellite Based Systems.
期刊最新文献
Next-cell prediction with LSTM based on vehicle mobility for 5G mc-IoT slices Secure positioning of wireless sensor networks against wormhole attacks Safeguarding the Internet of Health Things: advancements, challenges, and trust-based solution Optimized task offloading for federated learning based on β-skeleton graph in edge computing Noise robust automatic speaker verification systems: review and analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1