基于深度学习的牛皮癣评估:利用临床试验成像准确预测牛皮癣面积严重指数。

Q1 Computer Science Digital Biomarkers Pub Date : 2024-03-04 eCollection Date: 2024-01-01 DOI:10.1159/000536499
Yunzhao Xing, Sheng Zhong, Samuel L Aronson, Francisco M Rausa, Dan E Webster, Michelle H Crouthamel, Li Wang
{"title":"基于深度学习的牛皮癣评估:利用临床试验成像准确预测牛皮癣面积严重指数。","authors":"Yunzhao Xing, Sheng Zhong, Samuel L Aronson, Francisco M Rausa, Dan E Webster, Michelle H Crouthamel, Li Wang","doi":"10.1159/000536499","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Image-based machine learning holds great promise for facilitating clinical care; however, the datasets often used for model training differ from the interventional clinical trial-based findings frequently used to inform treatment guidelines. Here, we draw on longitudinal imaging of psoriasis patients undergoing treatment in the Ultima 2 clinical trial (NCT02684357), including 2,700 body images with psoriasis area severity index (PASI) annotations by uniformly trained dermatologists.</p><p><strong>Methods: </strong>An image-processing workflow integrating clinical photos of multiple body regions into one model pipeline was developed, which we refer to as the \"One-Step PASI\" framework due to its simultaneous body detection, lesion detection, and lesion severity classification. Group-stratified cross-validation was performed with 145 deep convolutional neural network models combined in an ensemble learning architecture.</p><p><strong>Results: </strong>The highest-performing model demonstrated a mean absolute error of 3.3, Lin's concordance correlation coefficient of 0.86, and Pearson correlation coefficient of 0.90 across a wide range of PASI scores comprising disease classifications of clear skin, mild, and moderate-to-severe disease. Within-person, time-series analysis of model performance demonstrated that PASI predictions closely tracked the trajectory of physician scores from severe to clear skin without systematically over- or underestimating PASI scores or percent changes from baseline.</p><p><strong>Conclusion: </strong>This study demonstrates the potential of image processing and deep learning to translate otherwise inaccessible clinical trial data into accurate, extensible machine learning models to assess therapeutic efficacy.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"8 1","pages":"13-21"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10911790/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-Based Psoriasis Assessment: Harnessing Clinical Trial Imaging for Accurate Psoriasis Area Severity Index Prediction.\",\"authors\":\"Yunzhao Xing, Sheng Zhong, Samuel L Aronson, Francisco M Rausa, Dan E Webster, Michelle H Crouthamel, Li Wang\",\"doi\":\"10.1159/000536499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Image-based machine learning holds great promise for facilitating clinical care; however, the datasets often used for model training differ from the interventional clinical trial-based findings frequently used to inform treatment guidelines. Here, we draw on longitudinal imaging of psoriasis patients undergoing treatment in the Ultima 2 clinical trial (NCT02684357), including 2,700 body images with psoriasis area severity index (PASI) annotations by uniformly trained dermatologists.</p><p><strong>Methods: </strong>An image-processing workflow integrating clinical photos of multiple body regions into one model pipeline was developed, which we refer to as the \\\"One-Step PASI\\\" framework due to its simultaneous body detection, lesion detection, and lesion severity classification. Group-stratified cross-validation was performed with 145 deep convolutional neural network models combined in an ensemble learning architecture.</p><p><strong>Results: </strong>The highest-performing model demonstrated a mean absolute error of 3.3, Lin's concordance correlation coefficient of 0.86, and Pearson correlation coefficient of 0.90 across a wide range of PASI scores comprising disease classifications of clear skin, mild, and moderate-to-severe disease. Within-person, time-series analysis of model performance demonstrated that PASI predictions closely tracked the trajectory of physician scores from severe to clear skin without systematically over- or underestimating PASI scores or percent changes from baseline.</p><p><strong>Conclusion: </strong>This study demonstrates the potential of image processing and deep learning to translate otherwise inaccessible clinical trial data into accurate, extensible machine learning models to assess therapeutic efficacy.</p>\",\"PeriodicalId\":11242,\"journal\":{\"name\":\"Digital Biomarkers\",\"volume\":\"8 1\",\"pages\":\"13-21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10911790/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Biomarkers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000536499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Biomarkers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000536499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

简介基于图像的机器学习在促进临床护理方面大有可为;然而,通常用于模型训练的数据集不同于经常用于指导治疗指南的基于干预性临床试验的结果。在此,我们借鉴了Ultima 2临床试验(NCT02684357)中接受治疗的银屑病患者的纵向图像,包括2700张由经过统一培训的皮肤科医生标注了银屑病面积严重程度指数(PASI)的身体图像:我们开发了一种图像处理工作流程,将多个身体区域的临床照片整合到一个模型管道中,我们将其称为 "一步式 PASI "框架,因为它能同时进行身体检测、皮损检测和皮损严重程度分类。我们使用 145 个深度卷积神经网络模型在一个集合学习架构中进行了分组分层交叉验证:结果:表现最好的模型的平均绝对误差为 3.3,Lin's concordance 相关系数为 0.86,Pearson 相关系数为 0.90,适用于广泛的 PASI 分数范围,包括皮肤透明、轻度和中重度疾病分类。对模型性能进行的人内时间序列分析表明,PASI 预测值密切跟踪了从重度到皮肤透明的医生评分轨迹,没有系统性地高估或低估 PASI 评分或与基线相比的百分比变化:这项研究证明了图像处理和深度学习的潜力,可将原本无法获取的临床试验数据转化为准确、可扩展的机器学习模型,以评估疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning-Based Psoriasis Assessment: Harnessing Clinical Trial Imaging for Accurate Psoriasis Area Severity Index Prediction.

Introduction: Image-based machine learning holds great promise for facilitating clinical care; however, the datasets often used for model training differ from the interventional clinical trial-based findings frequently used to inform treatment guidelines. Here, we draw on longitudinal imaging of psoriasis patients undergoing treatment in the Ultima 2 clinical trial (NCT02684357), including 2,700 body images with psoriasis area severity index (PASI) annotations by uniformly trained dermatologists.

Methods: An image-processing workflow integrating clinical photos of multiple body regions into one model pipeline was developed, which we refer to as the "One-Step PASI" framework due to its simultaneous body detection, lesion detection, and lesion severity classification. Group-stratified cross-validation was performed with 145 deep convolutional neural network models combined in an ensemble learning architecture.

Results: The highest-performing model demonstrated a mean absolute error of 3.3, Lin's concordance correlation coefficient of 0.86, and Pearson correlation coefficient of 0.90 across a wide range of PASI scores comprising disease classifications of clear skin, mild, and moderate-to-severe disease. Within-person, time-series analysis of model performance demonstrated that PASI predictions closely tracked the trajectory of physician scores from severe to clear skin without systematically over- or underestimating PASI scores or percent changes from baseline.

Conclusion: This study demonstrates the potential of image processing and deep learning to translate otherwise inaccessible clinical trial data into accurate, extensible machine learning models to assess therapeutic efficacy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Digital Biomarkers
Digital Biomarkers Medicine-Medicine (miscellaneous)
CiteScore
10.60
自引率
0.00%
发文量
12
审稿时长
23 weeks
期刊最新文献
The Imperative of Voice Data Collection in Clinical Trials. eHealth and mHealth in Antimicrobial Stewardship Programs. Detecting Longitudinal Trends between Passively Collected Phone Use and Anxiety among College Students. Video Assessment to Detect Amyotrophic Lateral Sclerosis. Digital Vocal Biomarker of Smoking Status Using Ecological Audio Recordings: Results from the Colive Voice Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1