利用 Tsallis 熵特征和 KNN 分类器从多通道脑电图子波段进行跨主体情绪识别。

Q1 Computer Science Brain Informatics Pub Date : 2024-03-05 DOI:10.1186/s40708-024-00220-3
Pragati Patel, Sivarenjani Balasubramanian, Ramesh Naidu Annavarapu
{"title":"利用 Tsallis 熵特征和 KNN 分类器从多通道脑电图子波段进行跨主体情绪识别。","authors":"Pragati Patel, Sivarenjani Balasubramanian, Ramesh Naidu Annavarapu","doi":"10.1186/s40708-024-00220-3","DOIUrl":null,"url":null,"abstract":"<p><p>Human emotion recognition remains a challenging and prominent issue, situated at the convergence of diverse fields, such as brain-computer interfaces, neuroscience, and psychology. This study utilizes an EEG data set for investigating human emotion, presenting novel findings and a refined approach for EEG-based emotion detection. Tsallis entropy features, computed for q values of 2, 3, and 4, are extracted from signal bands, including theta-θ (4-7 Hz), alpha-α (8-15 Hz), beta-β (16-31 Hz), gamma-γ (32-55 Hz), and the overall frequency range (0-75 Hz). These Tsallis entropy features are employed to train and test a KNN classifier, aiming for accurate identification of two emotional states: positive and negative. In this study, the best average accuracy of 79% and an F-score of 0.81 were achieved in the gamma frequency range for the Tsallis parameter q = 3. In addition, the highest accuracy and F-score of 84% and 0.87 were observed. Notably, superior performance was noted in the anterior and left hemispheres compared to the posterior and right hemispheres in the context of emotion studies. The findings show that the proposed method exhibits enhanced performance, making it a highly competitive alternative to existing techniques. Furthermore, we identify and discuss the shortcomings of the proposed approach, offering valuable insights into potential avenues for improvements.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"7"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358557/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cross subject emotion identification from multichannel EEG sub-bands using Tsallis entropy feature and KNN classifier.\",\"authors\":\"Pragati Patel, Sivarenjani Balasubramanian, Ramesh Naidu Annavarapu\",\"doi\":\"10.1186/s40708-024-00220-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human emotion recognition remains a challenging and prominent issue, situated at the convergence of diverse fields, such as brain-computer interfaces, neuroscience, and psychology. This study utilizes an EEG data set for investigating human emotion, presenting novel findings and a refined approach for EEG-based emotion detection. Tsallis entropy features, computed for q values of 2, 3, and 4, are extracted from signal bands, including theta-θ (4-7 Hz), alpha-α (8-15 Hz), beta-β (16-31 Hz), gamma-γ (32-55 Hz), and the overall frequency range (0-75 Hz). These Tsallis entropy features are employed to train and test a KNN classifier, aiming for accurate identification of two emotional states: positive and negative. In this study, the best average accuracy of 79% and an F-score of 0.81 were achieved in the gamma frequency range for the Tsallis parameter q = 3. In addition, the highest accuracy and F-score of 84% and 0.87 were observed. Notably, superior performance was noted in the anterior and left hemispheres compared to the posterior and right hemispheres in the context of emotion studies. The findings show that the proposed method exhibits enhanced performance, making it a highly competitive alternative to existing techniques. Furthermore, we identify and discuss the shortcomings of the proposed approach, offering valuable insights into potential avenues for improvements.</p>\",\"PeriodicalId\":37465,\"journal\":{\"name\":\"Brain Informatics\",\"volume\":\"11 1\",\"pages\":\"7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358557/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40708-024-00220-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-024-00220-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

人类情感识别仍然是一个具有挑战性的突出问题,它位于脑机接口、神经科学和心理学等不同领域的交汇处。本研究利用脑电图数据集研究人类情感,提出了基于脑电图的情感检测的新发现和改进方法。在 q 值为 2、3 和 4 时计算的 Tsallis 熵特征是从信号频段中提取的,包括θ-θ(4-7 Hz)、α-α(8-15 Hz)、β-β(16-31 Hz)、γ-γ(32-55 Hz)和整体频率范围(0-75 Hz)。这些 Tsallis 熵特征被用于训练和测试 KNN 分类器,目的是准确识别两种情绪状态:积极和消极。在这项研究中,当 Tsallis 参数 q = 3 时,伽马频率范围内的平均准确率达到 79%,F 值达到 0.81。此外,还观察到 84% 和 0.87 的最高准确率和 F 分数。值得注意的是,在情绪研究中,前脑和左半球的表现优于后脑和右半球。研究结果表明,所提出的方法表现出更高的性能,使其成为现有技术中极具竞争力的替代方法。此外,我们还发现并讨论了所提方法的不足之处,为潜在的改进途径提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cross subject emotion identification from multichannel EEG sub-bands using Tsallis entropy feature and KNN classifier.

Human emotion recognition remains a challenging and prominent issue, situated at the convergence of diverse fields, such as brain-computer interfaces, neuroscience, and psychology. This study utilizes an EEG data set for investigating human emotion, presenting novel findings and a refined approach for EEG-based emotion detection. Tsallis entropy features, computed for q values of 2, 3, and 4, are extracted from signal bands, including theta-θ (4-7 Hz), alpha-α (8-15 Hz), beta-β (16-31 Hz), gamma-γ (32-55 Hz), and the overall frequency range (0-75 Hz). These Tsallis entropy features are employed to train and test a KNN classifier, aiming for accurate identification of two emotional states: positive and negative. In this study, the best average accuracy of 79% and an F-score of 0.81 were achieved in the gamma frequency range for the Tsallis parameter q = 3. In addition, the highest accuracy and F-score of 84% and 0.87 were observed. Notably, superior performance was noted in the anterior and left hemispheres compared to the posterior and right hemispheres in the context of emotion studies. The findings show that the proposed method exhibits enhanced performance, making it a highly competitive alternative to existing techniques. Furthermore, we identify and discuss the shortcomings of the proposed approach, offering valuable insights into potential avenues for improvements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Informatics
Brain Informatics Computer Science-Computer Science Applications
CiteScore
9.50
自引率
0.00%
发文量
27
审稿时长
13 weeks
期刊介绍: Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing
期刊最新文献
Novel machine learning-driven comparative analysis of CSP, STFT, and CSP-STFT fusion for EEG data classification across multiple meditation and non-meditation sessions in BCI pipeline. Rethinking the residual approach: leveraging statistical learning to operationalize cognitive resilience in Alzheimer's disease. CalciumZero: a toolbox for fluorescence calcium imaging on iPSC derived brain organoids. Blockchain-enabled digital twin system for brain stroke prediction. A temporal-spectral graph convolutional neural network model for EEG emotion recognition within and across subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1