开发用于顺式调控分析的热稳定碱性磷酸酶报告系统,并将其应用于章鱼胚胎组织的三维数字成像。

IF 1.7 4区 生物学 Q4 CELL BIOLOGY Development Growth & Differentiation Pub Date : 2024-03-04 DOI:10.1111/dgd.12919
Kiyo Sakagami, Takeshi Igawa, Kaori Saikawa, Yusuke Sakaguchi, Nusrat Hossain, Chiho Kato, Kazuhito Kinemori, Nanoka Suzuki, Makoto Suzuki, Akane Kawaguchi, Haruki Ochi, Yuki Tajika, Hajime Ogino
{"title":"开发用于顺式调控分析的热稳定碱性磷酸酶报告系统,并将其应用于章鱼胚胎组织的三维数字成像。","authors":"Kiyo Sakagami,&nbsp;Takeshi Igawa,&nbsp;Kaori Saikawa,&nbsp;Yusuke Sakaguchi,&nbsp;Nusrat Hossain,&nbsp;Chiho Kato,&nbsp;Kazuhito Kinemori,&nbsp;Nanoka Suzuki,&nbsp;Makoto Suzuki,&nbsp;Akane Kawaguchi,&nbsp;Haruki Ochi,&nbsp;Yuki Tajika,&nbsp;Hajime Ogino","doi":"10.1111/dgd.12919","DOIUrl":null,"url":null,"abstract":"<p><i>Xenopus</i> is one of the essential model systems for studying vertebrate development. However, one drawback of this system is that, because of the opacity of <i>Xenopus</i> embryos, 3D imaging analysis is limited to surface structures, explant cultures, and post-embryonic tadpoles. To develop a technique for 3D tissue/organ imaging in whole <i>Xenopus</i> embryos, we identified optimal conditions for using placental alkaline phosphatase (PLAP) as a transgenic reporter and applied it to the correlative light microscopy and block-face imaging (CoMBI) method for visualization of PLAP-expressing tissues/organs. In embryos whose endogenous alkaline phosphatase activities were heat-inactivated, PLAP staining visualized various tissue-specific enhancer/promoter activities in a manner consistent with green fluorescent protein (GFP) fluorescence. Furthermore, PLAP staining appeared to be more sensitive than GFP fluorescence as a reporter, and the resulting expression patterns were not mosaic, in striking contrast to the mosaic staining pattern of β-galactosidase expressed from the <i>lacZ</i> gene that was introduced by the same transgenesis method. Owing to efficient penetration of alkaline phosphatase substrates, PLAP activity was detected in deep tissues, such as the developing brain, spinal cord, heart, and somites, by whole-mount staining. The stained embryos were analyzed by the CoMBI method, resulting in the digital reconstruction of 3D images of the PLAP-expressing tissues. These results demonstrate the efficacy of the PLAP reporter system for detecting enhancer/promoter activities driving deep tissue expression and its combination with the CoMBI method as a powerful approach for 3D digital imaging analysis of specific tissue/organ structures in <i>Xenopus</i> embryos.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"66 3","pages":"256-265"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/dgd.12919","citationCount":"0","resultStr":"{\"title\":\"Development of a heat-stable alkaline phosphatase reporter system for cis-regulatory analysis and its application to 3D digital imaging of Xenopus embryonic tissues\",\"authors\":\"Kiyo Sakagami,&nbsp;Takeshi Igawa,&nbsp;Kaori Saikawa,&nbsp;Yusuke Sakaguchi,&nbsp;Nusrat Hossain,&nbsp;Chiho Kato,&nbsp;Kazuhito Kinemori,&nbsp;Nanoka Suzuki,&nbsp;Makoto Suzuki,&nbsp;Akane Kawaguchi,&nbsp;Haruki Ochi,&nbsp;Yuki Tajika,&nbsp;Hajime Ogino\",\"doi\":\"10.1111/dgd.12919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Xenopus</i> is one of the essential model systems for studying vertebrate development. However, one drawback of this system is that, because of the opacity of <i>Xenopus</i> embryos, 3D imaging analysis is limited to surface structures, explant cultures, and post-embryonic tadpoles. To develop a technique for 3D tissue/organ imaging in whole <i>Xenopus</i> embryos, we identified optimal conditions for using placental alkaline phosphatase (PLAP) as a transgenic reporter and applied it to the correlative light microscopy and block-face imaging (CoMBI) method for visualization of PLAP-expressing tissues/organs. In embryos whose endogenous alkaline phosphatase activities were heat-inactivated, PLAP staining visualized various tissue-specific enhancer/promoter activities in a manner consistent with green fluorescent protein (GFP) fluorescence. Furthermore, PLAP staining appeared to be more sensitive than GFP fluorescence as a reporter, and the resulting expression patterns were not mosaic, in striking contrast to the mosaic staining pattern of β-galactosidase expressed from the <i>lacZ</i> gene that was introduced by the same transgenesis method. Owing to efficient penetration of alkaline phosphatase substrates, PLAP activity was detected in deep tissues, such as the developing brain, spinal cord, heart, and somites, by whole-mount staining. The stained embryos were analyzed by the CoMBI method, resulting in the digital reconstruction of 3D images of the PLAP-expressing tissues. These results demonstrate the efficacy of the PLAP reporter system for detecting enhancer/promoter activities driving deep tissue expression and its combination with the CoMBI method as a powerful approach for 3D digital imaging analysis of specific tissue/organ structures in <i>Xenopus</i> embryos.</p>\",\"PeriodicalId\":50589,\"journal\":{\"name\":\"Development Growth & Differentiation\",\"volume\":\"66 3\",\"pages\":\"256-265\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/dgd.12919\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development Growth & Differentiation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/dgd.12919\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development Growth & Differentiation","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/dgd.12919","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

章鱼是研究脊椎动物发育的重要模型系统之一。然而,该系统的一个缺点是,由于章鱼胚胎不透明,三维成像分析仅限于表面结构、外植体培养物和胚胎后期的蝌蚪。为了开发一种在整个爪蟾胚胎中进行三维组织/器官成像的技术,我们确定了使用胎盘碱性磷酸酶(PLAP)作为转基因报告物的最佳条件,并将其应用于相关光学显微镜和块面成像(CoMBI)方法,以实现表达 PLAP 的组织/器官的可视化。在内源性碱性磷酸酶活性受热失活的胚胎中,PLAP染色能以与绿色荧光蛋白(GFP)荧光一致的方式观察到各种组织特异性增强子/启动子活动。此外,作为一种报告基因,PLAP染色似乎比GFP荧光更灵敏,而且所产生的表达模式也不是马赛克式的,这与通过相同的转基因方法引入lacZ基因表达的β-半乳糖苷酶的马赛克染色模式形成了鲜明对比。由于碱性磷酸酶底物的高效渗透,PLAP活性可通过整装染色在深部组织中检测到,如发育中的大脑、脊髓、心脏和体节。染色后的胚胎通过 CoMBI 方法进行分析,从而获得 PLAP 表达组织的三维数字图像。这些结果证明了 PLAP 报告系统在检测驱动深层组织表达的增强子/启动子活动方面的功效,并证明了它与 CoMBI 方法的结合是对爪蟾胚胎中特定组织/器官结构进行三维数字成像分析的有力方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a heat-stable alkaline phosphatase reporter system for cis-regulatory analysis and its application to 3D digital imaging of Xenopus embryonic tissues

Xenopus is one of the essential model systems for studying vertebrate development. However, one drawback of this system is that, because of the opacity of Xenopus embryos, 3D imaging analysis is limited to surface structures, explant cultures, and post-embryonic tadpoles. To develop a technique for 3D tissue/organ imaging in whole Xenopus embryos, we identified optimal conditions for using placental alkaline phosphatase (PLAP) as a transgenic reporter and applied it to the correlative light microscopy and block-face imaging (CoMBI) method for visualization of PLAP-expressing tissues/organs. In embryos whose endogenous alkaline phosphatase activities were heat-inactivated, PLAP staining visualized various tissue-specific enhancer/promoter activities in a manner consistent with green fluorescent protein (GFP) fluorescence. Furthermore, PLAP staining appeared to be more sensitive than GFP fluorescence as a reporter, and the resulting expression patterns were not mosaic, in striking contrast to the mosaic staining pattern of β-galactosidase expressed from the lacZ gene that was introduced by the same transgenesis method. Owing to efficient penetration of alkaline phosphatase substrates, PLAP activity was detected in deep tissues, such as the developing brain, spinal cord, heart, and somites, by whole-mount staining. The stained embryos were analyzed by the CoMBI method, resulting in the digital reconstruction of 3D images of the PLAP-expressing tissues. These results demonstrate the efficacy of the PLAP reporter system for detecting enhancer/promoter activities driving deep tissue expression and its combination with the CoMBI method as a powerful approach for 3D digital imaging analysis of specific tissue/organ structures in Xenopus embryos.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Development Growth & Differentiation
Development Growth & Differentiation 生物-发育生物学
CiteScore
4.60
自引率
4.00%
发文量
62
审稿时长
6 months
期刊介绍: Development Growth & Differentiation (DGD) publishes three types of articles: original, resource, and review papers. Original papers are on any subjects having a context in development, growth, and differentiation processes in animals, plants, and microorganisms, dealing with molecular, genetic, cellular and organismal phenomena including metamorphosis and regeneration, while using experimental, theoretical, and bioinformatic approaches. Papers on other related fields are also welcome, such as stem cell biology, genomics, neuroscience, Evodevo, Ecodevo, and medical science as well as related methodology (new or revised techniques) and bioresources. Resource papers describe a dataset, such as whole genome sequences and expressed sequence tags (ESTs), with some biological insights, which should be valuable for studying the subjects as mentioned above. Submission of review papers is also encouraged, especially those providing a new scope based on the authors’ own study, or a summarization of their study series.
期刊最新文献
Quantitative in toto live imaging analysis of apical nuclear migration in the mouse telencephalic neuroepithelium. Labeling and sorting of avian primordial germ cells utilizing Lycopersicon Esculentum lectin. Transition from fetal to postnatal state in the heart: Crosstalk between metabolism and regeneration. Issue Information Mitochondrial DNA replication is essential for neurogenesis but not gliogenesis in fetal neural stem cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1