基于高分辨率时频分布图像和 CNN 的次同步振荡源定位方法

IF 1.9 Q4 ENERGY & FUELS Global Energy Interconnection Pub Date : 2024-02-01 DOI:10.1016/j.gloei.2024.01.001
Hui Liu , Yundan Cheng , Yanhui Xu , Guanqun Sun , Rusi Chen , Xiaodong Yu
{"title":"基于高分辨率时频分布图像和 CNN 的次同步振荡源定位方法","authors":"Hui Liu ,&nbsp;Yundan Cheng ,&nbsp;Yanhui Xu ,&nbsp;Guanqun Sun ,&nbsp;Rusi Chen ,&nbsp;Xiaodong Yu","doi":"10.1016/j.gloei.2024.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>The penetration of new energy sources such as wind power is increasing, which consequently increases the occurrence rate of subsynchronous oscillation events. However, existing subsynchronous oscillation source-identification methods primarily analyze fixed-mode oscillations and rarely consider time-varying features, such as frequency drift, caused by the random volatility of wind farms when oscillations occur. This paper proposes a subsynchronous oscillation source-localization method that involves an enhanced short-time Fourier transform and a convolutional neural network (CNN). First, an enhanced STFT is performed to secure high-resolution time-frequency distribution (TFD) images from the measured data of the generation unit ports. Next, these TFD images are amalgamated to form a subsynchronous oscillation feature map that serves as input to the CNN to train the localization model. Ultimately, the trained CNN model realizes the online localization of subsynchronous oscillation sources. The effectiveness and accuracy of the proposed method are validated via multimachine system models simulating forced and natural oscillation events using the Power Systems Computer Aided Design platform. Test results show that the proposed method can localize subsynchronous oscillation sources online while considering unpredictable fluctuations in wind farms, thus providing a foundation for oscillation suppression in practical engineering scenarios.</p></div>","PeriodicalId":36174,"journal":{"name":"Global Energy Interconnection","volume":"7 1","pages":"Pages 1-13"},"PeriodicalIF":1.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S209651172400001X/pdf?md5=ae0a7565c544ae4a3e3bc81ab74cb6b8&pid=1-s2.0-S209651172400001X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Localization method of subsynchronous oscillation source based on high-resolution time-frequency distribution image and CNN\",\"authors\":\"Hui Liu ,&nbsp;Yundan Cheng ,&nbsp;Yanhui Xu ,&nbsp;Guanqun Sun ,&nbsp;Rusi Chen ,&nbsp;Xiaodong Yu\",\"doi\":\"10.1016/j.gloei.2024.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The penetration of new energy sources such as wind power is increasing, which consequently increases the occurrence rate of subsynchronous oscillation events. However, existing subsynchronous oscillation source-identification methods primarily analyze fixed-mode oscillations and rarely consider time-varying features, such as frequency drift, caused by the random volatility of wind farms when oscillations occur. This paper proposes a subsynchronous oscillation source-localization method that involves an enhanced short-time Fourier transform and a convolutional neural network (CNN). First, an enhanced STFT is performed to secure high-resolution time-frequency distribution (TFD) images from the measured data of the generation unit ports. Next, these TFD images are amalgamated to form a subsynchronous oscillation feature map that serves as input to the CNN to train the localization model. Ultimately, the trained CNN model realizes the online localization of subsynchronous oscillation sources. The effectiveness and accuracy of the proposed method are validated via multimachine system models simulating forced and natural oscillation events using the Power Systems Computer Aided Design platform. Test results show that the proposed method can localize subsynchronous oscillation sources online while considering unpredictable fluctuations in wind farms, thus providing a foundation for oscillation suppression in practical engineering scenarios.</p></div>\",\"PeriodicalId\":36174,\"journal\":{\"name\":\"Global Energy Interconnection\",\"volume\":\"7 1\",\"pages\":\"Pages 1-13\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S209651172400001X/pdf?md5=ae0a7565c544ae4a3e3bc81ab74cb6b8&pid=1-s2.0-S209651172400001X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Energy Interconnection\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S209651172400001X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Energy Interconnection","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209651172400001X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

风力发电等新能源的普及率不断提高,从而增加了次同步振荡事件的发生率。然而,现有的次同步振荡源识别方法主要分析固定模式振荡,很少考虑振荡发生时风电场随机波动引起的频率漂移等时变特征。本文提出了一种亚同步振荡源定位方法,涉及增强型短时傅立叶变换和卷积神经网络(CNN)。首先,执行增强型 STFT,从发电单元端口的测量数据中获取高分辨率时频分布 (TFD) 图像。然后,将这些 TFD 图像合并形成亚同步振荡特征图,作为 CNN 的输入来训练定位模型。最终,经过训练的 CNN 模型实现了亚同步振荡源的在线定位。通过使用电力系统计算机辅助设计平台模拟强迫振荡和自然振荡事件的多机系统模型,验证了所提方法的有效性和准确性。测试结果表明,所提出的方法可以在线定位亚同步振荡源,同时考虑到风电场中不可预测的波动,从而为实际工程场景中的振荡抑制奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Localization method of subsynchronous oscillation source based on high-resolution time-frequency distribution image and CNN

The penetration of new energy sources such as wind power is increasing, which consequently increases the occurrence rate of subsynchronous oscillation events. However, existing subsynchronous oscillation source-identification methods primarily analyze fixed-mode oscillations and rarely consider time-varying features, such as frequency drift, caused by the random volatility of wind farms when oscillations occur. This paper proposes a subsynchronous oscillation source-localization method that involves an enhanced short-time Fourier transform and a convolutional neural network (CNN). First, an enhanced STFT is performed to secure high-resolution time-frequency distribution (TFD) images from the measured data of the generation unit ports. Next, these TFD images are amalgamated to form a subsynchronous oscillation feature map that serves as input to the CNN to train the localization model. Ultimately, the trained CNN model realizes the online localization of subsynchronous oscillation sources. The effectiveness and accuracy of the proposed method are validated via multimachine system models simulating forced and natural oscillation events using the Power Systems Computer Aided Design platform. Test results show that the proposed method can localize subsynchronous oscillation sources online while considering unpredictable fluctuations in wind farms, thus providing a foundation for oscillation suppression in practical engineering scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Energy Interconnection
Global Energy Interconnection Engineering-Automotive Engineering
CiteScore
5.70
自引率
0.00%
发文量
985
审稿时长
15 weeks
期刊最新文献
Enhancing photovoltaic power prediction using a CNN-LSTM-attention hybrid model with Bayesian hyperparameter optimization Adaptive VSG control of flywheel energy storage array for frequency support in microgrids Adaptive linear active disturbance-rejection control strategy reduces the impulse current of compressed air energy storage connected to the grid Optimization dispatching strategy for an energy storage system considering its unused capacity sharing Optimal scheduling of zero-carbon park considering variational characteristics of hydrogen energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1