Tim Vogel;Samira Mansourzadeh;Uttam Nandi;Justin Norman;Sascha Preu;Clara J. Saraceno
{"title":"高平均功率太赫兹脉冲激发的 1030 纳米波长光电导接收器的性能","authors":"Tim Vogel;Samira Mansourzadeh;Uttam Nandi;Justin Norman;Sascha Preu;Clara J. Saraceno","doi":"10.1109/TTHZ.2024.3358616","DOIUrl":null,"url":null,"abstract":"In the last few years, many advances have been made in the demonstration of high-average power pulsed THz sources; however, little effort has been made to study compatible sensitive field-resolved detectors. Here, we investigate ErAs:InAlGaAs photoconductive receivers optimized for a probe wavelength of 1030 nm and thus suitable for the new class of high-power ultrafast Ytterbium-based laser sources for THz generation and detection. The performance of the receiver is tested with a few-cycle THz source with high average power up to 20 mW and the dynamic range and saturation behavior of the receiver is thoroughly characterized. Under optimized settings, a dynamic range of more than 115 dB is reached in a 120 s measurement time with 20 mW of THz average power, which is among the highest reported values to date. By reviewing the state-of-the art in time domain spectroscopy measurement and postprocessing technology, we identify current limitations and guidelines for further increasing the dynamic range toward 150 dB in short measurement times using high average power THz systems with sensitive photoconductive receivers.","PeriodicalId":13258,"journal":{"name":"IEEE Transactions on Terahertz Science and Technology","volume":"14 2","pages":"139-151"},"PeriodicalIF":3.9000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10414147","citationCount":"0","resultStr":"{\"title\":\"Performance of Photoconductive Receivers at 1030 nm Excited by High Average Power THz Pulses\",\"authors\":\"Tim Vogel;Samira Mansourzadeh;Uttam Nandi;Justin Norman;Sascha Preu;Clara J. Saraceno\",\"doi\":\"10.1109/TTHZ.2024.3358616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last few years, many advances have been made in the demonstration of high-average power pulsed THz sources; however, little effort has been made to study compatible sensitive field-resolved detectors. Here, we investigate ErAs:InAlGaAs photoconductive receivers optimized for a probe wavelength of 1030 nm and thus suitable for the new class of high-power ultrafast Ytterbium-based laser sources for THz generation and detection. The performance of the receiver is tested with a few-cycle THz source with high average power up to 20 mW and the dynamic range and saturation behavior of the receiver is thoroughly characterized. Under optimized settings, a dynamic range of more than 115 dB is reached in a 120 s measurement time with 20 mW of THz average power, which is among the highest reported values to date. By reviewing the state-of-the art in time domain spectroscopy measurement and postprocessing technology, we identify current limitations and guidelines for further increasing the dynamic range toward 150 dB in short measurement times using high average power THz systems with sensitive photoconductive receivers.\",\"PeriodicalId\":13258,\"journal\":{\"name\":\"IEEE Transactions on Terahertz Science and Technology\",\"volume\":\"14 2\",\"pages\":\"139-151\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10414147\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Terahertz Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10414147/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Terahertz Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10414147/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Performance of Photoconductive Receivers at 1030 nm Excited by High Average Power THz Pulses
In the last few years, many advances have been made in the demonstration of high-average power pulsed THz sources; however, little effort has been made to study compatible sensitive field-resolved detectors. Here, we investigate ErAs:InAlGaAs photoconductive receivers optimized for a probe wavelength of 1030 nm and thus suitable for the new class of high-power ultrafast Ytterbium-based laser sources for THz generation and detection. The performance of the receiver is tested with a few-cycle THz source with high average power up to 20 mW and the dynamic range and saturation behavior of the receiver is thoroughly characterized. Under optimized settings, a dynamic range of more than 115 dB is reached in a 120 s measurement time with 20 mW of THz average power, which is among the highest reported values to date. By reviewing the state-of-the art in time domain spectroscopy measurement and postprocessing technology, we identify current limitations and guidelines for further increasing the dynamic range toward 150 dB in short measurement times using high average power THz systems with sensitive photoconductive receivers.
期刊介绍:
IEEE Transactions on Terahertz Science and Technology focuses on original research on Terahertz theory, techniques, and applications as they relate to components, devices, circuits, and systems involving the generation, transmission, and detection of Terahertz waves.