通过对光合产物进行 13C 标记追踪发现,放牧排斥通过微生物坏死根源 C 增加了土壤有机 C

IF 5.1 1区 农林科学 Q1 SOIL SCIENCE Biology and Fertility of Soils Pub Date : 2024-03-05 DOI:10.1007/s00374-024-01807-y
Qing Qu, Lei Deng, Anna Gunina, Xuying Hai, Jun Deng, Zhouping Shangguan, Yakov Kuzyakov
{"title":"通过对光合产物进行 13C 标记追踪发现,放牧排斥通过微生物坏死根源 C 增加了土壤有机 C","authors":"Qing Qu, Lei Deng, Anna Gunina, Xuying Hai, Jun Deng, Zhouping Shangguan, Yakov Kuzyakov","doi":"10.1007/s00374-024-01807-y","DOIUrl":null,"url":null,"abstract":"<p>Grasslands store large amounts of C; however, the underlying mechanisms of soil C sequestration after grazing exclusion are not well known. This study aimed to elucidate the drivers of soil organic C (SOC) sequestration from plant and microbial residues in temperate grasslands after long-term (~ 40 years) grazing exclusion. We conducted in situ <sup>13</sup>C-CO<sub>2</sub> labelling experiments in the field and traced <sup>13</sup>C in plant-soil systems paired with biomarkers to assess the C input from plants into soils. Long-term grazing exclusion increased all plant and soil pools including shoots, roots, microbial biomass and necromass. <sup>13</sup>C allocation in these pools also increased, whereas <sup>13</sup>C was lost via respiration as CO<sub>2</sub> from soils decreased. <sup>13</sup>C incorporation into the soil and microbial biomass increased with <sup>13</sup>C allocation into the roots. Grazing exclusion for over 40 years increased the total SOC content by 190%, largely due to increases in fungal necromass C, and there was a minor contribution of lignin phenols to SOC accrual (0.8%). Consequently, grazing exclusion boosts not only aboveground biomass, but also larger roots and rhizodeposition, leading to microbial biomass and necromass formation. Microbial necromass and lignin phenols contribute to SOC accrual under grazing exclusion, and microbial necromass, especially fungal necromass, makes a larger contribution than lignin phenols.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grazing exclusion increases soil organic C through microbial necromass of root-derived C as traced by 13C labelling photosynthate\",\"authors\":\"Qing Qu, Lei Deng, Anna Gunina, Xuying Hai, Jun Deng, Zhouping Shangguan, Yakov Kuzyakov\",\"doi\":\"10.1007/s00374-024-01807-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Grasslands store large amounts of C; however, the underlying mechanisms of soil C sequestration after grazing exclusion are not well known. This study aimed to elucidate the drivers of soil organic C (SOC) sequestration from plant and microbial residues in temperate grasslands after long-term (~ 40 years) grazing exclusion. We conducted in situ <sup>13</sup>C-CO<sub>2</sub> labelling experiments in the field and traced <sup>13</sup>C in plant-soil systems paired with biomarkers to assess the C input from plants into soils. Long-term grazing exclusion increased all plant and soil pools including shoots, roots, microbial biomass and necromass. <sup>13</sup>C allocation in these pools also increased, whereas <sup>13</sup>C was lost via respiration as CO<sub>2</sub> from soils decreased. <sup>13</sup>C incorporation into the soil and microbial biomass increased with <sup>13</sup>C allocation into the roots. Grazing exclusion for over 40 years increased the total SOC content by 190%, largely due to increases in fungal necromass C, and there was a minor contribution of lignin phenols to SOC accrual (0.8%). Consequently, grazing exclusion boosts not only aboveground biomass, but also larger roots and rhizodeposition, leading to microbial biomass and necromass formation. Microbial necromass and lignin phenols contribute to SOC accrual under grazing exclusion, and microbial necromass, especially fungal necromass, makes a larger contribution than lignin phenols.</p>\",\"PeriodicalId\":9210,\"journal\":{\"name\":\"Biology and Fertility of Soils\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology and Fertility of Soils\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s00374-024-01807-y\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-024-01807-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

草地储存了大量的碳,但人们对禁牧后土壤固碳的内在机制还不甚了解。本研究旨在阐明温带草原长期(约 40 年)禁牧后植物和微生物残留物对土壤有机碳(SOC)固存的驱动因素。我们在野外进行了原位 13C-CO2 标记实验,并追踪了植物-土壤系统中的 13C 与生物标记物,以评估植物对土壤的碳输入。长期禁牧增加了所有植物和土壤库,包括芽、根、微生物生物量和坏死物质。这些池中的 13C 分配也有所增加,而随着土壤中二氧化碳的减少,13C 通过呼吸作用流失。土壤和微生物生物量中的 13C 含量增加了,根部的 13C 含量也增加了。超过 40 年的禁牧使总 SOC 含量增加了 190%,这主要是由于真菌坏死物质 C 的增加,而木质素酚对 SOC 的增加只有很小的贡献(0.8%)。因此,禁牧不仅提高了地上生物量,还扩大了根系和根茎沉积,导致微生物生物量和坏质的形成。在禁牧条件下,微生物坏死物质和木质素酚都有助于增加有机碳,而且微生物坏死物质,尤其是真菌坏死物质,比木质素酚的贡献更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Grazing exclusion increases soil organic C through microbial necromass of root-derived C as traced by 13C labelling photosynthate

Grasslands store large amounts of C; however, the underlying mechanisms of soil C sequestration after grazing exclusion are not well known. This study aimed to elucidate the drivers of soil organic C (SOC) sequestration from plant and microbial residues in temperate grasslands after long-term (~ 40 years) grazing exclusion. We conducted in situ 13C-CO2 labelling experiments in the field and traced 13C in plant-soil systems paired with biomarkers to assess the C input from plants into soils. Long-term grazing exclusion increased all plant and soil pools including shoots, roots, microbial biomass and necromass. 13C allocation in these pools also increased, whereas 13C was lost via respiration as CO2 from soils decreased. 13C incorporation into the soil and microbial biomass increased with 13C allocation into the roots. Grazing exclusion for over 40 years increased the total SOC content by 190%, largely due to increases in fungal necromass C, and there was a minor contribution of lignin phenols to SOC accrual (0.8%). Consequently, grazing exclusion boosts not only aboveground biomass, but also larger roots and rhizodeposition, leading to microbial biomass and necromass formation. Microbial necromass and lignin phenols contribute to SOC accrual under grazing exclusion, and microbial necromass, especially fungal necromass, makes a larger contribution than lignin phenols.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biology and Fertility of Soils
Biology and Fertility of Soils 农林科学-土壤科学
CiteScore
11.80
自引率
10.80%
发文量
62
审稿时长
2.2 months
期刊介绍: Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.
期刊最新文献
Increased microbial carbon use efficiency and turnover rate drive soil organic carbon storage in old-aged forest on the southeastern Tibetan Plateau Inoculation of the Morchella importuna mycosphere with Pseudomonas chlororaphis alleviated a soil-borne disease caused by Paecilomyces penicillatus Solid-state nuclear magnetic resonance at low-field as an approach for fertiliser dissolution monitoring Pre-sowing recurrent inoculation with Pseudomonas fluorescens promotes maize growth Interactive effects of plant litter chemistry and organic/inorganic forms of nitrogen addition on Moso bamboo (Phyllostachys edulis) soil respiration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1