通过定制损失函数获取约束的深度神经网络

Eduardo Vyhmeister, Rocio Paez, Gabriel Gonzalez
{"title":"通过定制损失函数获取约束的深度神经网络","authors":"Eduardo Vyhmeister, Rocio Paez, Gabriel Gonzalez","doi":"arxiv-2403.02042","DOIUrl":null,"url":null,"abstract":"The significance of learning constraints from data is underscored by its\npotential applications in real-world problem-solving. While constraints are\npopular for modeling and solving, the approaches to learning constraints from\ndata remain relatively scarce. Furthermore, the intricate task of modeling\ndemands expertise and is prone to errors, thus constraint acquisition methods\noffer a solution by automating this process through learnt constraints from\nexamples or behaviours of solutions and non-solutions. This work introduces a\nnovel approach grounded in Deep Neural Network (DNN) based on Symbolic\nRegression that, by setting suitable loss functions, constraints can be\nextracted directly from datasets. Using the present approach, direct\nformulation of constraints was achieved. Furthermore, given the broad\npre-developed architectures and functionalities of DNN, connections and\nextensions with other frameworks could be foreseen.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Neural Network for Constraint Acquisition through Tailored Loss Function\",\"authors\":\"Eduardo Vyhmeister, Rocio Paez, Gabriel Gonzalez\",\"doi\":\"arxiv-2403.02042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The significance of learning constraints from data is underscored by its\\npotential applications in real-world problem-solving. While constraints are\\npopular for modeling and solving, the approaches to learning constraints from\\ndata remain relatively scarce. Furthermore, the intricate task of modeling\\ndemands expertise and is prone to errors, thus constraint acquisition methods\\noffer a solution by automating this process through learnt constraints from\\nexamples or behaviours of solutions and non-solutions. This work introduces a\\nnovel approach grounded in Deep Neural Network (DNN) based on Symbolic\\nRegression that, by setting suitable loss functions, constraints can be\\nextracted directly from datasets. Using the present approach, direct\\nformulation of constraints was achieved. Furthermore, given the broad\\npre-developed architectures and functionalities of DNN, connections and\\nextensions with other frameworks could be foreseen.\",\"PeriodicalId\":501033,\"journal\":{\"name\":\"arXiv - CS - Symbolic Computation\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.02042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.02042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从数据中学习约束条件在实际问题解决中的潜在应用凸显了其重要性。虽然约束条件在建模和求解中很受欢迎,但从数据中学习约束条件的方法仍然相对匮乏。此外,复杂的建模任务需要专业知识,而且容易出错,因此约束条件获取方法提供了一种解决方案,即通过从解决方案和非解决方案的示例或行为中学习约束条件,使这一过程自动化。这项工作介绍了一种基于符号回归的深度神经网络(DNN)的新方法,通过设置合适的损失函数,可以直接从数据集中提取约束条件。使用本方法,可以直接制定约束条件。此外,鉴于 DNN 广泛的预开发架构和功能,可以预见与其他框架的连接和扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Neural Network for Constraint Acquisition through Tailored Loss Function
The significance of learning constraints from data is underscored by its potential applications in real-world problem-solving. While constraints are popular for modeling and solving, the approaches to learning constraints from data remain relatively scarce. Furthermore, the intricate task of modeling demands expertise and is prone to errors, thus constraint acquisition methods offer a solution by automating this process through learnt constraints from examples or behaviours of solutions and non-solutions. This work introduces a novel approach grounded in Deep Neural Network (DNN) based on Symbolic Regression that, by setting suitable loss functions, constraints can be extracted directly from datasets. Using the present approach, direct formulation of constraints was achieved. Furthermore, given the broad pre-developed architectures and functionalities of DNN, connections and extensions with other frameworks could be foreseen.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesizing Evolving Symbolic Representations for Autonomous Systems Introducing Quantification into a Hierarchical Graph Rewriting Language Towards Verified Polynomial Factorisation Symbolic Regression with a Learned Concept Library Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1