Michael Brody, Maksim Kulikov, Sagynbek Orunbaev, Peter J. Van Oevelen
{"title":"中亚全球能源与水资源交换(GEWEX)项目:地区水文气候项目案例","authors":"Michael Brody, Maksim Kulikov, Sagynbek Orunbaev, Peter J. Van Oevelen","doi":"10.1007/s00376-023-3384-2","DOIUrl":null,"url":null,"abstract":"<p>Central Asia consists of the former Soviet Republics, Kazakhstan, Kyrgyz Republic, Tajikistan, Turkmenistan, and Uzbekistan. The region’s climate is continental, mostly semi-arid to arid. Agriculture is a significant part of the region’s economy. By its nature of intensive water use, agriculture is extremely vulnerable to climate change. Population growth and irrigation development have significantly increased the demand for water in the region. Major climate change issues include melting glaciers and a shrinking snowpack, which are the foundation of the region’s water resources, and a changing precipitation regime. Most glaciers are located in Kyrgyzstan and Tajikistan, leading to transboundary water resource issues. Summer already has extremely high temperatures. Analyses indicate that Central Asia has been warming and precipitation might be increasing. The warming is expected to increase, but its spatial and temporal distribution depends upon specific global scenarios. Projections of future precipitation show significant uncertainties in type, amount, and distribution. Regional Hydroclimate Projects (RHPs) are an approach to studying these issues. Initial steps to develop an RHP began in 2021 with a widely distributed online survey about these climate issues. It was followed up with an online workshop and then, in 2023, an in-person workshop, held in Tashkent, Uzbekistan. Priorities for the Global Energy and Water Exchanges (GEWEX) project for the region include both observations and modeling, as well as development of better and additional precipitation observations, all of which are topics for the next workshop. A well-designed RHP should lead to reductions in critical climate uncertainties in policy-relevant timeframes that can influence decisions on necessary investments in climate adaptation.</p>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"12 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Global Energy and Water Exchanges (GEWEX) Project in Central Asia: The Case for a Regional Hydroclimate Project\",\"authors\":\"Michael Brody, Maksim Kulikov, Sagynbek Orunbaev, Peter J. Van Oevelen\",\"doi\":\"10.1007/s00376-023-3384-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Central Asia consists of the former Soviet Republics, Kazakhstan, Kyrgyz Republic, Tajikistan, Turkmenistan, and Uzbekistan. The region’s climate is continental, mostly semi-arid to arid. Agriculture is a significant part of the region’s economy. By its nature of intensive water use, agriculture is extremely vulnerable to climate change. Population growth and irrigation development have significantly increased the demand for water in the region. Major climate change issues include melting glaciers and a shrinking snowpack, which are the foundation of the region’s water resources, and a changing precipitation regime. Most glaciers are located in Kyrgyzstan and Tajikistan, leading to transboundary water resource issues. Summer already has extremely high temperatures. Analyses indicate that Central Asia has been warming and precipitation might be increasing. The warming is expected to increase, but its spatial and temporal distribution depends upon specific global scenarios. Projections of future precipitation show significant uncertainties in type, amount, and distribution. Regional Hydroclimate Projects (RHPs) are an approach to studying these issues. Initial steps to develop an RHP began in 2021 with a widely distributed online survey about these climate issues. It was followed up with an online workshop and then, in 2023, an in-person workshop, held in Tashkent, Uzbekistan. Priorities for the Global Energy and Water Exchanges (GEWEX) project for the region include both observations and modeling, as well as development of better and additional precipitation observations, all of which are topics for the next workshop. A well-designed RHP should lead to reductions in critical climate uncertainties in policy-relevant timeframes that can influence decisions on necessary investments in climate adaptation.</p>\",\"PeriodicalId\":7249,\"journal\":{\"name\":\"Advances in Atmospheric Sciences\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Atmospheric Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00376-023-3384-2\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00376-023-3384-2","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
The Global Energy and Water Exchanges (GEWEX) Project in Central Asia: The Case for a Regional Hydroclimate Project
Central Asia consists of the former Soviet Republics, Kazakhstan, Kyrgyz Republic, Tajikistan, Turkmenistan, and Uzbekistan. The region’s climate is continental, mostly semi-arid to arid. Agriculture is a significant part of the region’s economy. By its nature of intensive water use, agriculture is extremely vulnerable to climate change. Population growth and irrigation development have significantly increased the demand for water in the region. Major climate change issues include melting glaciers and a shrinking snowpack, which are the foundation of the region’s water resources, and a changing precipitation regime. Most glaciers are located in Kyrgyzstan and Tajikistan, leading to transboundary water resource issues. Summer already has extremely high temperatures. Analyses indicate that Central Asia has been warming and precipitation might be increasing. The warming is expected to increase, but its spatial and temporal distribution depends upon specific global scenarios. Projections of future precipitation show significant uncertainties in type, amount, and distribution. Regional Hydroclimate Projects (RHPs) are an approach to studying these issues. Initial steps to develop an RHP began in 2021 with a widely distributed online survey about these climate issues. It was followed up with an online workshop and then, in 2023, an in-person workshop, held in Tashkent, Uzbekistan. Priorities for the Global Energy and Water Exchanges (GEWEX) project for the region include both observations and modeling, as well as development of better and additional precipitation observations, all of which are topics for the next workshop. A well-designed RHP should lead to reductions in critical climate uncertainties in policy-relevant timeframes that can influence decisions on necessary investments in climate adaptation.
期刊介绍:
Advances in Atmospheric Sciences, launched in 1984, aims to rapidly publish original scientific papers on the dynamics, physics and chemistry of the atmosphere and ocean. It covers the latest achievements and developments in the atmospheric sciences, including marine meteorology and meteorology-associated geophysics, as well as the theoretical and practical aspects of these disciplines.
Papers on weather systems, numerical weather prediction, climate dynamics and variability, satellite meteorology, remote sensing, air chemistry and the boundary layer, clouds and weather modification, can be found in the journal. Papers describing the application of new mathematics or new instruments are also collected here.