Mohamed Amine Ben Abdallah, Imed Khemili, Nizar Aifaoui, Med Amine Laribi
{"title":"利用进化算法合成典型柔性机构的计算机辅助设计工具","authors":"Mohamed Amine Ben Abdallah, Imed Khemili, Nizar Aifaoui, Med Amine Laribi","doi":"10.1017/s0263574724000171","DOIUrl":null,"url":null,"abstract":"Accurate prediction for mechanisms’ dynamic responses has always been a challenging task for designers. For modeling easiness purposes, mechanisms’ synthesis and optimization have been mostly limited to rigid systems, making consequently the designer unable to vow that the manufactured mechanism satisfies the target responses. To address this limitation, flexible mechanism synthesis is aimed in this work. Two benchmark mechanisms being the core of myriad mechanical devices are of scope, mainly, the flexible slider-crank and the four-bar. In addition to the mechanism dimensions, materials properties have been embedded in the synthesis problem. Two responses are of interest for the slider-crank mechanism, the slider velocity, and the midpoint axial displacement for the flexible connecting rod. Whereas five responses have been compiled for the four-bar mechanism synthesis. A comparative analysis of seven optimization techniques to solve the synthesis problem for both mechanisms has been performed. Subsequently, an executable computer-aided design tool for mechanisms synthesis has been developed under MATLAB®. Numerical outcomes emphasize the limits of a single-response-based synthesis for a flexible mechanism. It has been proven that combining different responses alleviates possible error and fulfill high-accuracy requirement.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"3 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computer-aided design tool for typical flexible mechanisms synthesis by means of evolutionary algorithms\",\"authors\":\"Mohamed Amine Ben Abdallah, Imed Khemili, Nizar Aifaoui, Med Amine Laribi\",\"doi\":\"10.1017/s0263574724000171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate prediction for mechanisms’ dynamic responses has always been a challenging task for designers. For modeling easiness purposes, mechanisms’ synthesis and optimization have been mostly limited to rigid systems, making consequently the designer unable to vow that the manufactured mechanism satisfies the target responses. To address this limitation, flexible mechanism synthesis is aimed in this work. Two benchmark mechanisms being the core of myriad mechanical devices are of scope, mainly, the flexible slider-crank and the four-bar. In addition to the mechanism dimensions, materials properties have been embedded in the synthesis problem. Two responses are of interest for the slider-crank mechanism, the slider velocity, and the midpoint axial displacement for the flexible connecting rod. Whereas five responses have been compiled for the four-bar mechanism synthesis. A comparative analysis of seven optimization techniques to solve the synthesis problem for both mechanisms has been performed. Subsequently, an executable computer-aided design tool for mechanisms synthesis has been developed under MATLAB®. Numerical outcomes emphasize the limits of a single-response-based synthesis for a flexible mechanism. It has been proven that combining different responses alleviates possible error and fulfill high-accuracy requirement.\",\"PeriodicalId\":49593,\"journal\":{\"name\":\"Robotica\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0263574724000171\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0263574724000171","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
Computer-aided design tool for typical flexible mechanisms synthesis by means of evolutionary algorithms
Accurate prediction for mechanisms’ dynamic responses has always been a challenging task for designers. For modeling easiness purposes, mechanisms’ synthesis and optimization have been mostly limited to rigid systems, making consequently the designer unable to vow that the manufactured mechanism satisfies the target responses. To address this limitation, flexible mechanism synthesis is aimed in this work. Two benchmark mechanisms being the core of myriad mechanical devices are of scope, mainly, the flexible slider-crank and the four-bar. In addition to the mechanism dimensions, materials properties have been embedded in the synthesis problem. Two responses are of interest for the slider-crank mechanism, the slider velocity, and the midpoint axial displacement for the flexible connecting rod. Whereas five responses have been compiled for the four-bar mechanism synthesis. A comparative analysis of seven optimization techniques to solve the synthesis problem for both mechanisms has been performed. Subsequently, an executable computer-aided design tool for mechanisms synthesis has been developed under MATLAB®. Numerical outcomes emphasize the limits of a single-response-based synthesis for a flexible mechanism. It has been proven that combining different responses alleviates possible error and fulfill high-accuracy requirement.
期刊介绍:
Robotica is a forum for the multidisciplinary subject of robotics and encourages developments, applications and research in this important field of automation and robotics with regard to industry, health, education and economic and social aspects of relevance. Coverage includes activities in hostile environments, applications in the service and manufacturing industries, biological robotics, dynamics and kinematics involved in robot design and uses, on-line robots, robot task planning, rehabilitation robotics, sensory perception, software in the widest sense, particularly in respect of programming languages and links with CAD/CAM systems, telerobotics and various other areas. In addition, interest is focused on various Artificial Intelligence topics of theoretical and practical interest.