Aixi Pan;Chenxu Zhu;Zheng Yan;Xiaoli Zhu;Zhongyi Liu;Bo Cui
{"title":"利用锥形氧化硅掩模制造尖端顶点小于 5 纳米的高有序硅纳米锥阵列","authors":"Aixi Pan;Chenxu Zhu;Zheng Yan;Xiaoli Zhu;Zhongyi Liu;Bo Cui","doi":"10.1109/TSM.2024.3372521","DOIUrl":null,"url":null,"abstract":"In view of the wide range of applications for ultra-sharp silicon (Si) nanocones, extensive research has been conducted on their fabrication processes. However, these conventional methods pose challenges in terms of achieving uniformity, controllability, and cost-efficiency. This study presents a novel approach to fabricating Si nanocone structures through reactive ion etching (RIE) using a tapered silicon dioxide mask, followed by thermal oxidation sharpening to reduce the apex diameter to 4 nm. Here the tapered SiO2 mask with a smooth sidewall was created through a combination of RIE and a buffered oxide etchant (BOE) etching. The lithography of the oxide mask is achieved using a cost-effective (compared to electron beam lithography) maskless aligner system (MLA). Subsequently, a non-switching pseudo-Bosch process, employing sulfur hexafluoride (SF6) gas and octafluorocyclobutane (C4F8) gas, is utilized for the etching the Si nanocone structures, resulting in an average apex diameter of 30 nm. Finally, thermal oxidation followed by oxide removal further sharpens these cones to 4 nm.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 2","pages":"160-165"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of the Highly Ordered Silicon Nanocone Array With Sub-5 nm Tip Apex by Tapered Silicon Oxide Mask\",\"authors\":\"Aixi Pan;Chenxu Zhu;Zheng Yan;Xiaoli Zhu;Zhongyi Liu;Bo Cui\",\"doi\":\"10.1109/TSM.2024.3372521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of the wide range of applications for ultra-sharp silicon (Si) nanocones, extensive research has been conducted on their fabrication processes. However, these conventional methods pose challenges in terms of achieving uniformity, controllability, and cost-efficiency. This study presents a novel approach to fabricating Si nanocone structures through reactive ion etching (RIE) using a tapered silicon dioxide mask, followed by thermal oxidation sharpening to reduce the apex diameter to 4 nm. Here the tapered SiO2 mask with a smooth sidewall was created through a combination of RIE and a buffered oxide etchant (BOE) etching. The lithography of the oxide mask is achieved using a cost-effective (compared to electron beam lithography) maskless aligner system (MLA). Subsequently, a non-switching pseudo-Bosch process, employing sulfur hexafluoride (SF6) gas and octafluorocyclobutane (C4F8) gas, is utilized for the etching the Si nanocone structures, resulting in an average apex diameter of 30 nm. Finally, thermal oxidation followed by oxide removal further sharpens these cones to 4 nm.\",\"PeriodicalId\":451,\"journal\":{\"name\":\"IEEE Transactions on Semiconductor Manufacturing\",\"volume\":\"37 2\",\"pages\":\"160-165\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Semiconductor Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10457063/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10457063/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Fabrication of the Highly Ordered Silicon Nanocone Array With Sub-5 nm Tip Apex by Tapered Silicon Oxide Mask
In view of the wide range of applications for ultra-sharp silicon (Si) nanocones, extensive research has been conducted on their fabrication processes. However, these conventional methods pose challenges in terms of achieving uniformity, controllability, and cost-efficiency. This study presents a novel approach to fabricating Si nanocone structures through reactive ion etching (RIE) using a tapered silicon dioxide mask, followed by thermal oxidation sharpening to reduce the apex diameter to 4 nm. Here the tapered SiO2 mask with a smooth sidewall was created through a combination of RIE and a buffered oxide etchant (BOE) etching. The lithography of the oxide mask is achieved using a cost-effective (compared to electron beam lithography) maskless aligner system (MLA). Subsequently, a non-switching pseudo-Bosch process, employing sulfur hexafluoride (SF6) gas and octafluorocyclobutane (C4F8) gas, is utilized for the etching the Si nanocone structures, resulting in an average apex diameter of 30 nm. Finally, thermal oxidation followed by oxide removal further sharpens these cones to 4 nm.
期刊介绍:
The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.